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An Ambiguity Analysis under Heterogeneity with a Bayesian Spin 

Diletta Topazio 

Abstract 

We often have to deal with uncertainty regarding multiple aspects of the decision problems we 
face. This uncertainty may concern, for instance, our earnings, the likelihood to receive them 
in a given moment and in a given amount. The aim of this thesis is to contribute to the growing 
body of literature around “multi-dimensional uncertainty”, which enlarges the scope of 
ambiguity outside the frame of uncertainty about probabilities. It does so by analysing, both 
theoretically and empirically the evidence stemming from a multi-stage experiment in which 
subjects have to choose between lotteries whereby amounts of monetary prizes are not always 
known, whereas probabilities are always public knowledge. In the experiment, three different 
levels of information over some monetary prizes are randomized between subjects. The 
experimental evidence undergoes structural estimation exercises: these elicit the individuals' 
degree of risk aversion within the frame of a standard constant relative risk aversion (CRRA) 
utility function. Furthermore, we investigate  whether a change of information, such as the one 
we reproduce through the different treatments conditions, translates into a change in behavior 
and, in turn, whether and how much this change translates into a significant change in their 
measured (CRRA) attitude toward risk. As to the behavioral content of the structural model for 
the uncertain payoffs, we propose two alternative specifications, labelled “naïve” and 
“sophisticated”. The empirical evidence shows a moderate but significant degree of love for 
ambiguity, since less information given to subjects results in a lower estimate of their risk 
aversion, and, as a consequence, in a stronger attraction toward risk and uncertainty. A mixture 
model is implemented to identify the probability of individuals mirroring one behavioral model 
or the other, or, saying it differently, the percentage of observations compatible with either 
model.  We conclude that our subjects have a strong tendency to behave as naïve. 
 
 
Keywords: heterogeneity; risk aversion; ambiguity 
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1. Introduction 

Uncertainty regarding multiple aspects of the decision problems is an issue that often arises. 
This uncertainty may concern the amount of monetary earnings, the likelihood of these 
earnings, the actual date at which these earning are received, etc. In this respect, the way in 
which individuals behave in uncertain situations may as well varies for different dimensions of 
uncertainty. However, the theoretical and empirical economic discussion on these issues has 
been mostly focused on a specific kind of uncertainty, the uncertainty about probabilities. 
The aim of this dissertation is to contribute to the scarce but increasing body of research which 
deals with “multi-dimensional uncertainty”, that enlarges the scope of ambiguity outside the 
frame of uncertainty about probabilities. We contribute on this by analyzing (both theoretically 
and empirically) existing evidence from a multi-stage experiment in which subjects have to 
choose between lotteries where probabilities were publicly known at all times but some of the 
monetary prizes were not. 
It should be noted at this point that, from a pure bayesian perspective, all the different 
dimensions of ambiguity can be reduced to a single one by appropriately defining the “states 
of the world” as multidimensional objects defined over all uncertain dimensions. Within this 
augmented frame, a “bayesian” decision maker would simply form some subjective prior 
beliefs over this augmented set of states of the world and maximize an objective function, that 
represents her preferences based on them. If we accept this bayesian interpretation, every 
decision problem under multi-dimensional ambiguity can be appropriately reduced to a 
standard problem of uncertainty over probabilities. This can only stand if we show that people 
are able to build such complex and multi-dimensional spaces and behave accordingly. 
Conversely, if this was not be the case, it would matter which objects of uncertainty are 
domains and whether and how these domains might be correlated. 
This thesis reports evidence form a multi-stage experiment conducted at the "Laboratory of 
Theoretical and Experimental Economics" of the University of Alicante by Albarrán et al [1]. 
In the experiment, three different levels of information over some monetary prizes are 
randomized between subjects. Specifically, in the full information treatment, TR2, subjects 
observe all the prizes of the lotteries they are asked to select; in the partial information 
treatment, TR1, they are not informed about their actual values, but they know that they are 
i.i.d. draws from a uniform distribution; finally in the no information treatment, TR0, they are 
just informed of the prize rankings. 
The experiment develops along two ordered balance phases built upon two classic risk-
elicitation protocols, the Holt and Laury [2] and the Hey and Orme [3], respectively. Hey and 
Orme [3] experiment is built around binary choices between lotteries over 4 fixed monetary 
prizes, such as {0, 1/3, 2/3, 1}. In the treatments with ambiguity, TR0 and TR1, the intermediate 
payoffs, Y and X, are communicated to the subjects, being between 0 and 1, with Y<X. In 
phase 1, instead, subjects elicit, by the way of a Multiple Prize List (MPL), the certainty 
equivalent of the same lotteries used in phase 2. 
The experimental evidence is read by the way of some structural estimation exercises in which 
the individuals' degree of risk aversion is elicited within the frame of a standard constant 
relative risk aversion (CRRA) utility function. Furthermore, it is analyzed whether a change of 
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information, such as the one reproduced through the different treatments conditions, correlates 
to a change in behavior and, in turn, whether and, how this change transforms into a significant 
change in their measured (CRRA) attitude toward risk.  
The uncertain payoffs Y and X are identified as the first and the second order statistics from a 
uniform distribution in [0, 1], where the order statistics of a random sample  
{X1, X2} are defined as the sample values placed in ascending order. 
While this is totally correct for TR1 subjects -given that they know the characteristics of the 
random generation process that yields the uncertain payoffs- the same statistical model was 
imposed for subjects in TR0, considering that they already had this information. This is purely 
an identification assumption, as there is no possibility to test whether this is truth for the 
expectations in TR0 about the X and Y distributions, or whether subjects in TR0 consider 
another distribution. On the other hand, it is highly probable that TR0 subjects will heuristically 
and automatically come up with such a distribution of the payoffs, as it occurs in Laplace's well 
known “principle of insufficient reason”. In any case, the important here is that -based on this 
assumption- our structural model is able to estimate treatment effects, to such an extent that we 
are able test a null hypothesis in which CRRA in both TR0 and TR1 is the same. Since subjects 
are randomized within treatments, a significant change in the CRRA coefficient between TR0 
and TR1 has to be interpreted as a genuine treatment effect due to a change in information. 
Regarding the behavioral content of the structural model for the uncertain payoffs, two 
alternative specifications were considered, labelled as “naïve” and “sophisticated”, 
respectively.  A decision maker figures out a point estimation of the unknown payoffs X and 
Y, starting from the information that these are draws of a uniform distribution in [0, 1]. This 
means that E[X] and the E[Y] are computed and then plugged inside the CRRA utility function 
to be maximized. On the other hand, a sophisticated decision maker will proceed with a true 
bayesian updating. In particular, she formulates a prior distribution over the X and the Y, and 
then calculates the expected utility from these densities. 
We shall now here summarize our main findings. Our empirical evidence shows a certain 
degree of love for ambiguity, given that the less the information given to subjects, the lower 
their estimated risk aversion, and, consequently, the bigger their attraction toward risk and 
uncertainty. Moreover, the risk aversion coefficient estimated for TR0 is significantly lower 
from that estimated in TR2, although no statistically significant difference was found between 
estimated CRRA coefficients in TR0 and TR1. These findings are in a way in contradiction to 
the common wisdom of the literature, although they are consistent with other experimental 
literature that applies similar elicitation techniques as Andersen et al [4]. 
When comparing the two behavioral models, that is the “bayesian” against the “naïve”, the 
estimated likelihood of the naïve approach is higher than the one of the bayesian. This suggests 
that the naïve approach closely approximates subjects' decision rules, given the data. 
In this regard, a mixture model is implemented to identify the probability of individuals using 
each model, which corresponds to the percentage of observations compatible to each model. 
This mixture model aims to achieve a statistical reconciliation of these two dominant theories 
of choices under risk. It avoids any extreme declaration of “winners” and “losers”, providing a 
more balanced metric to decide which theory performs better in a given domain given the 
experimental data. Due to the fact that the likelihoods of our models are very close, this 
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probability was estimated numerically, using a grid loop.  
Specifically, a probability 𝜋"#$, i.e. the probability of the subjects acting as bayesian in each 
of their decisions was estimated. Subsequently we let this πBAY moving inside a grid (0,1), to 
finally choose the value that maximizes the likelihood function. 
This numerical computation demonstrates that the subjects have a strong tendency to behave 
as naïve, given the estimation result, which was π"#$ = 0.2. 
The structure of this thesis is arranged as follows. In Chapter 2 it is shown how the individuals' 
heterogeneity is treated under structural modelling, providing some examples applied to the 
data. In Chapter 3 our structural estimations are reported as a function of the two alternative 
behavioral specifications, the naïve and the bayesian, along with the estimation of our mixture 
model. Finally, Chapter 5 summarizes our results and highlights possible future developments 
and more complex experimental investigations.  

2. Structural Modelling Under Heterogeneity 

2.1 Maximum Likelihood Estimation 
Customized likelihood functions corresponding to specific models of decision making 
under risk and uncertainty are more and more popular among economists dealing with 
a wide range of fields, as suggested by Harrison [29]. This demand for customization is 
due to the numerous parametric functional forms experimental economists use to 
account for behaviour under risk and uncertainty. These functions also permit to 
represents ”handwritten” models, used to explain decision rules, which may be different 
from the traditional ones. In behavioural econometrics it's becoming even more 
common to see user-written maximum likelihood estimations rather than pre-packaged 
model specifications.  
Specifically, what a maximum likelihood estimation does is, conditional on the 
structural model under scrutiny, to select the value of the estimator which maximizes 
the probability of observing the collected data, i.e. the probability density function. It is 
given by a model such as P(y | ϴ), where ϴ represents the set of unknown parameters 
we want to estimate and Y the vector containing the observed decisions. The maximum 
likelihood estimator, ϴ*, maximizes the likelihood function P(y | ϴ) with respect to ϴ; 
this means that we maximize the probability of observing the data we actually observed 
as function of the parameters of the model.  
With a big sample size the likelihood function, being the product of the probability 
density functions of all the subjects' outcomes, is close to 0. For this reason, locating its 
maximum may be difficult. The logarithmic function is usually employed to solve this 
problem in order to stretch the function vertically and making it easier to locate its 
maximum. Furthermore, the logarithmic transformation is strictly monotone, preserving 
the same local maxima. 
In our specific model, so under the Expected Utility Model, the probabilities of each 
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outcome k, namely 𝑝', are the ones induced by the experimenter1. This means that the 
expected utility is calculated as the sum of utilities of monetary prizes, each of which is 
multiplied by the corresponding probability. 
Being i the subject, k ∈	{0, 1} the index of the lottery equal to 0 for the right one and 1 
for the left one, and h ∈	{1, 2, 3, 4} the index of the prizes: 
 

          𝑼𝒊(𝑳𝒌) = ∑ 𝒖(𝝌𝒊)𝑯
𝒉6𝟏 𝒑𝒉𝒉                                          (2.1) 

                                 
where 𝐮𝒊 : R → R      Lk = {X; pk}      𝑿 ∈ {𝟎, 𝒚, 𝒙, 𝟏} 
 
In this chapter we use the mean-variance utility function (2.2), given its simplicity and 
intuitiveness in calculations. The mean-variance (MV) utility function applied to a lottery i is 
as follow:                

UB(LD) = 𝐸[LD] −	bI	𝑉𝑎𝑟(LD)                                 (2.2)                             

The utility of each individual is a function of the expected value of the lottery µD, and of its 
variance, 𝑉𝑎𝑟(LD). 
It can be shown that MV utility is equivalent to a VNM utility function (2.1) with a quadratic 
utility function u(x) = x − βxQ, where 𝛽 is the only unknown parameter to be estimated. It 
represents the level of risk aversion. Indeed, the variance 𝑉𝑎𝑟(LD)	is used as a proxy of the risk 
of the lottery. An individual is considered to be risk-averse if 𝛽 has a positive value, namely if, 
ceteris paribus, a higher value of the lottery variance decreases his utility. By the same token, 
a negative 𝛽 value is associated with a risk-seeking decision maker, hence 𝛽 =0 indicates risk 
neutrality. 
In this section we shall estimate β using data from the full information treatment, TR2, where 
there is no ambiguity and subjects know the true value of both X and Y. 
In Phase 1, subjects make 16 choices per period. According to the usual Holt and Laury 
framework, the threshold value of 𝛽, such that the decision maker switches to the certain 
amount rather then the risky lottery, is extracted. According to Moffatt [30], only this piece of 
information should be extracted from each individual facing the Holt and Laury lottery. Indeed, 
he states the list of people choices cannot be analyzed as an independent sequence. However, 
this does not seem to be the case for our data, as we can see from Figure 2.1 from Rodriguez 
and Ponti [31], where subjects choices are shown as a function of the periods (i.e., the 
individual choice between the lottery and a specific monetary prize ranging from 0 to 15). 

 

                                                
1 All maximum likelihood routines have been programmed and run with STATA v. 14, by STATA Corporation. 
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Figure 2. 1: Phase 1 Switching Point Graph 

 
Here the first two highlighted subjects, subject 1 and 2, are a perfect example of a rational 
behavior, as indicated by the presence of a single switching point. Looking at subject 4 or 6 
instead, a clearly irrational behavioral pattern emerges, with the presence of several switching 
points. Furthermore, these two cases are not unique. This demonstrates that we may not rely 
on a single switching point information per subject. Indeed, the emergent absence of a clear 
path individuals follow throughout the whole Phase suggests that we may also treat people's 
decisions as independent. 
For Phase 2 we directly take the 25 decisions subjects make between the two lotteries.  
For the lotteries of Phase 1 and Phase 2, the expected value is computed as:  

E[LD] 	= 	T 	
U

V6W

𝑝'V × 𝑋',			 

where πZ	is the prize the subjects will receive with probability pD. 
The variance, as the expectation of the squared deviation of the prize random variable from its 
mean, is computed as: 

σ^_
Q = TpDZ

`

Z6W

× (χZ − E[LD])Q. 

 

Then, using these values, for every left and right lottery we compute their utility function and 
the difference of these utility values: 
 

UB(LD) = E[LD] − βB	σ^b
Q ,   k = 0,1. 

 

This difference will prescribe the optimal behavior, namely the lottery to be chosen according 
to the utility maximization principle. 



7 
 

In Phase 1, the left lottery Lg is actually a certain prize. This means that for all the left lotteries 
we have σgQ = 0	and E[L𝟘] = the actual number displayed. Namely, the 𝛽 never appears in the 
left lotteries of Phase 1. 
Subsequently, we proceed with the calculation of the difference of the expected utility, as 
follows:  

ΔU = U(LW) − U(Lg) = jE[L𝟙] − βσ^l
Q m − jE[L𝟘] − βσ^n

Q m = [… ] 

This latent index, based on latent preferences, is then brought back to the observed choices 
using a standard cumulative normal distribution function Φ(ΔE[U]).	 
This probit function has a domain in [−∞,+∞] and has a codomain in [0,1] as shown in Figure 
2.2. 

 

 
Figure 2. 2: Normal c.d.f Function 

2.2 Dealing with Heterogeneity 
Here we introduce the distinction between the various and competing approaches to stochastic 
modelling, in which the choices made by individuals express their heterogeneity. 
The Random Preference Model (Loomes and Sugden [32]) explains heterogenity in decisions 
as heterogeneity in the structural component 𝛽, in our case). This is an example of an 
heterogeneous agent approach, which attributes a variation in behavior of the population to 
variation in the parameter representing preferences.  
The Fechner Model (Fechner [33]), in which the stochastic component in the decision making 
process is done applying an additive idiosyncratic error ϵ ∼ N(0, σvQ). 
The Tremble Approach (Loomes et al. [34]) assumes that there is a small positive probability 
that the individual, at any point in time, loses concentration and adopt any possible behavior 
randomly with probability ω. 
The Random Effect Model, whereby the unobserved heterogeneity is expected to be explained 
by a random effect parameter, ηB, which captures the between subject differences, and its 
variance, σyQ , is a measure of subject heterogeneity. 

Random Preference Model 
In this model, the structural parameter β ∼ Njµz, σzQm	accounts for all the heterogeneity in the 
model. 
For the maximum likelihood routine to work, we need to create some local variables, which 
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are temporarily used only inside the program. 
The parameters we want to estimate are 𝜇|	and	𝜎|Q, which describe the distribution of 𝛽 ∼

𝑁j𝜇|, 𝜎|Qm. This means that we maximize the log likelihood function with respect to 𝜇|	and	𝜎|Q, 
where: 
- 𝜇| is estimated through the choices made by subjects, the experimental data represents then 
the basis to construct likelihood functions, such that the selected optimal value of 𝛽 is directly 
dependent on the subjects' binary decisions between the two lotteries. 
- 𝜎|Q is imposed to be strictly positive, given that it is the standard deviation of 𝛽, using the 
strictly monotone exponential transformation, and is estimated as a constant. 
Equating the expected utilities and solving for 𝛽 we get: 
 

β =
E[L𝟙] − E[L𝟘]
σ^l
Q − σ^n

Q  

This general formula holds for both Phase 1 and Phase 2. Furthermore, for Phase 1, it can be 
simplified, given the left lottery is always a fixed price, γ, and  E[L𝟘] = 𝛾 
 and	σ^n

Q = 0. 

Specifically, γB =
�_�W
W�

, with 𝛿I	being the prize of decision i, is scaled back by 1 position and 
then normalized in [0,1] dividing by 15.  
 

β�Z���W = 	
𝐸[𝐿𝟙] − 𝛾
σ^l
Q  

Therefore, we are left with these two values for 𝛽: 
 

β�Z���W = 	
𝐸[𝐿𝟙] − 𝛾
σ^l
Q  

and  

β�Z���Q = 	
𝐸[𝐿𝟙] − 𝐸[𝐿g]
σ^l
Q 	− 	σ^n

Q  

The probability that the right lottery is chosen, conditional on the average risk aversion 
coefficient, namely the mean of β, 𝜇|, is equal to the probability that ΔU is positive: 
 

Pjk = 1� µzm = PjΔU > 0 � µzm = PjU(LW) > U(Lg) � µzm

= PjΔE[LD] − βΔE[σD] > 0 � µzm = P �β < ΔE[LD]
ΔE[σD]

 � µz�. 

Calling β∗ = z���
��

, we use the normal transformation and we get: 
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PB,� �β <
ΔE�LD,��
ΔE�σD,��

 � µz� = P

⎝

⎜
⎛β − µz

σz
<

ΔE�LD,��
ΔE�σD,��

− µz

σz
 ¡
¡ µz

⎠

⎟
⎞
= Pjβ < β∗ � µzm

= ΦjβB,�∗ m 

 

where Φ is the standard normal c.d.f. 
In conclusion, the likelihood function of observing the right lottery chosen, given µz, is: 

ℒ =Tln§PB,� �β <
ΔE�LD,��
ΔE�σD,��

 � µz�¨
B,�

  

An important property of the c.d.f. of both the probit and the logit model is symmetry. 

By this, Φ(−β∗) = 1 − Φ(β∗). 

Following the same way of reasoning, the symmetric probability that the right lottery is 

chosen, is just: 

Pjk = 0� µzm = PjΔU < 0 � µzm = PjU(LW) < U(Lg) � µzm

= PjΔE[LD] − βΔE[σD] < 0 � µzm][= P �β > ΔE[LD]
ΔE[σD]

 � µz� 

Calling β∗ = z���
��

, we use the normal transformation and we get: 

PB,�

⎝

⎜
⎛β − µz

σz
>

ΔE�LD,��
ΔE�σD,��

− µz

σz
 ¡
¡ µz

⎠

⎟
⎞
= PB,�jβ > β∗ � µzm = Φ(−β∗) 

In conclusion, the likelihood function of observing the left lottery chosen, given  µz is: 

ℒ = ∑ 𝑙𝑛 �1 − 𝑃I,¬ �𝛽 <
­®�¯°,±�
­®�²°,±�

 � 𝜇|��I,¬   

Fechner Model 
As hinted above, the Fechner Model introduces a stochastic component to take into account 
subjects' heterogeneity in the decision making process. This is included by adding an 
idiosyncratic error to ΔU, that is ϵ ∼ N(0, σvQ). Then, rather than to parameters, attention is here 
posed to payoffs differences.  
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As soon as this error terms appears, the behavior is no longer deterministic and it is described 
in term of probabilities as follows: 
 

𝑃(𝑘 = 1) = 𝑃(𝑈(𝐿W) + ξW > 𝑈(𝐿g) + ξg) = 𝑃(Δ𝑈 + ϵ > 𝟘) = 𝑃(ϵ > −Δ𝑈)

= 𝑃 �
ϵ
σv
>
−Δ𝑈
σv

� = Φ�
Δ𝑈
σv
� 

 

where ϵ is the difference between the two lotteries' errors in valuation ξW	and ξg, Φ is the 
standard normal c.d.f. and 𝜎¶ represents the noisiness of the choice. This means 𝜎¶ =	0 fully 
explains a deterministic choice, while if σv → ∞, the choice is entirely driven by noise, namely 
both right and left lotteries are chosen with 0.5 probability. 
The parameter we want to estimate is 𝜎¶, namely we maximize the log likelihood function with 
respect to it. It is imposed to be strictly positive, being a standard deviation, trough the usual 
strictly monotone exponential transformation.  
Again, the U(LB)and the ΔU are used as temporary variables.  
Table 2.1 reports an application of the Fechner model using the Mean Variance utility function. 
Only TR2 data are used here, so 𝛽 estimated is a proxy of individuals' aversion to risk (as 
represented by the variance). 

 

 
 

Tabel 2.1: Fechner Model with Mean Variance Utility Function 

Tremble Parameter 
According to the Random Preference model just described above, if the lottery LB first-order 
stochastically dominates lottery $𝐿', the first one will always be chosen, no matter the risk 
attitudes of subjects. Indeed, any observed choice of a dominated lottery cannot be explained 
by the RP model. 
For this reason, the tremble parameter ω is introduced, and it represents the probability a 
subject loses concentration at any task and randomly chooses, with equal probability, between 
the two alternative lotteries. This does not necessarily imply he makes the incorrect choice, as 
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under such a condition the correct and incorrect choices are equally likely. 
This is not a model per se, rather it's an extension to be applied either to the Random Preference 
model or to the Fechner model. 
 

In the RP model the P(k = 1)(1 − ω)Φ�z
∗���
��

� + ¸
Q
 . 

In Fechner, P(k = 1) = (1 − ω)Φ¹­º
»
¼ + ¸

Q
 . 

 

This means that with (1 - 𝜔) probability the correct choice prescribed by the model is 
done, and with 𝜔 probability the random choice equal to 	W

Q
	 is made.  

The Random Effect Model 
In this model, the unobserved heterogeneity is explained by a random effect parameter, ηB, 
which is perpendicular to the other covariates. Specifically, 𝜂I	captures the between-subject 
differences, and its variance, σyQ , is a measure of subject heterogeneity. The probability of 
observing the right lottery chosen by subject i in period τ is now: 
 

P(k = 1) = fjχB,Á βm + ηB + ϵBÁ 

 

where ηB ∼ j0, σyQm is the individual error, or heterogeneity, and ϵBÁ ∼ N(0,1) is the 
idiosyncratic error. While 𝜖IÃ varies across subjects and periods, 𝜂I has a unique value for every 
individual.  
In our model, this probability can be explained as: 
 

P(k = 1) = αE�ΔµB,Á� + βE�ΔσB,Á𝟚 � + ηB + ϵB, 

where   

E�ΔµB,Á� = E[L𝟙] − E[L𝟘] 

and  

E�ΔσB,Á𝟚 � = σ^l
Q − σ^n

Q  

 

If the 𝛼 = 1 constraint is imposed, we obtain the usual mean-variance utility function, where a 
negative value for 𝛽 is expected.  
Only the data from TR2 individual is used, since we want to extract the risk aversion 
coefficient, while leaving aside any form of ambiguity which might arise from the missing 
payoffs' information of the TR1 and TR0.  
We implement both probit and logit regressions, with the xtprobit and xtlogit functions, namely 
declaring our data structure to be a longitudinal panel. The Fechner approach is implemented 
by default when using these functions in Stata.  \\The results are shown in table 2.2. 
The results of the probit and the logit are closely comparable. As expected, 𝛽	is negative, and 
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statistically significant at the 99% confidence level. Namely, the probability of choosing the 
right lottery is a negative function of the difference between the right and the left lottery 
variance. 
Also the standard deviation of the random effect coefficient is statistically significant at the 
99% confidence level, and it gives us information about the subjects heterogeneity. 
Specifically, the random effect coefficient ηB ∼ (0,0.238) according to the probit model, and 
ηB ∼ (0,0.363) according to the logit. 

 

 
 

Table 2.2: Random Effect Probit and Logit Models 

3. Dealing with Ambiguity 

3.1 Dealing with Heterogeneity 
In conditions of uncertain outcomes, the Savage approach [7] has been traditionally used. In 
particular, individuals have been assumed to behave according to a unique subjective prior 
belief over all states of the world, and, given this, they would maximize their expected utility. 
This decision process clearly neglects the existence of any form of ambiguity, and it prescribes 
the way decision makers should deal with uncertain situations.   
However, Ellsberg [8] claims that most individuals treat ambiguity differently than objective 
risk. In specific, he argues that people exhibit a significant degree of ambiguity aversion, 
placing a premium on outcomes for which probabilities are known. This general stylized fact 
has been replicated broadly and has important implications for the economics of optimal 
contracting, investment choices, and mechanism design. 
One possible way to structurally identify ambiguity aversion is to assume that the latter 
influences people's degree of risk aversion (more precisely, the curvature of the utility 
function), an approach followed, among others, by Klibanoff et al. [11] and Andersen et al. [4]. 
As described in Chapter 3, in the experiment of Albarrán et al [1], prizes in the lotteries are 
distributed according to the rule 0<y<x<15. In what follows, this prize domain is normalized, 
for the sake of simplicity, to lay within the unit interval [0, 1], where $0 is 0 and $15 is 1. 
The treatment conditions -randomized between subjects- regard the amount of information 
given to them about X and Y. Furthermore, while in the full information treatment, TR2, people 
face a normal risky situation and there is no ambiguity influencing their decision, this is not 
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the case for the partial information and no information treatments TR1 and TR0, respectively. 
As we shall see, some ambiguity preference appears from subjects' choices which is higher the 
less information is received. 

3.2 Econometric Strategy 
In what follows we shall layout the identification assumptions underlying our structural 
estimations. Specifically, we need to define our identification strategy with respect to i)  
subjects' risk attitudes and how the uncertain payoffs, X and Y, enter in subjects' calculations 
together with ii) the behavioral model underlying subjects' optimization program. Regarding 
the former, as it will be explained in Section 3.2.1 we shall impose that subjects maximize a 
VNM CRRA utility function in all treatments and that, consistently with the TR1 experimental 
instructions, Y and X are calculated as first and second order statistics of a uniform distribution 
defined over the unit interval. Regarding the latter, that is explained in Section 3.2.2, we shall 
consider two alternative behavioral models, defined as naïve and sophisticated. In the former, 
subjects are assumed to estimate first the uncertain payoffs and then use these expected payoffs 
in the expected maximization program; in the latter -consistently with a genuine bayesian 
approach- the order of integration is reversed. 

3.2.1 Uncertain Payoffs and Risk Aversion 
We read the experimental evidence by the way of some structural estimation exercises in which 
we elicit the individuals' degree of risk aversion within the frame of a standard constant relative 
risk aversion (CRRA) utility function, which generally performs better in more complex 
structural estimations. 
The utility function is given below: 
 

U(χ) = 	Ë
χW�Ì

1 − ρ
		𝑖𝑓	ρ ≠ 1

ln χ				𝑖𝑓	ρ = 1
 

 

where ρ is the (CRRA) coefficient which does not depend on χ, as formalized by Pratt [35]. As 
for its economic interpretation, ρ > 0 represents risk aversion, ρ = 0 risk neutrality and ρ < 0 
risk loving. 
In Figure 3.12, examples of u(χ) are presented for different values of ρ: concave in case of risk 
aversion (left) and convex in case of risk loving (right). 

                                                
2 Machine [36] 
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Figure 3.1: Risk Aversion Coefficient for both Risk Aversion and Risk Loving 

 
In Section 3.3.1 we check whether the change of information implemented by our treatments 
conditions generates a change in behavior and, in turn, (whether and) how this change is 
converted into a significant change in the measured (CRRA) attitude toward risk.  
The uncertain payoffs Y and X are identified as the first and the second order statistics from a 
uniform distribution in [0, 1], where the order statistics of a random sample χW, . . . , χÑ are 
defined as the sample values placed in ascending order. 
Specifically, let fD(n,  z) denote the k�Z order statistics of n draws, where n = 2 in our case, of 
a density function f(⋅). 
Let X ∼ fQ(2,  z),   Y ∼ fW(2,  z) 
where 

fQ(2,  z) = 2 z f(z) F(z),        𝑓W(2,  𝑧) = 2	𝑧	𝑓(𝑧)1 − 𝐹(𝑧) 

 

come from the general formula for the k�Z order statistics of n draws  
 

n  �
n − 1
k − 1�  f

(z) jF(z)mÑ�Wj1 − F(z)mÑ�D 

 

being z a random draw from a uniform distribution and being 
 

f(z) = 1  the p.d.f. of z, F(z) = z  the c.d.f of z. 

 

While this is certainly true for TR1 subjects -since they know the characteristics of the random 
generation process that yields the uncertain payoffs- we impose the same statistical model for 
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subjects in TR0, assuming they had this information. As we said, this is purely an identification 
assumption, as there is no possibility to test whether this is the true for expectations in TR0 
about X and Y distribution, or whether subjects in TR0 consider a different type of distribution. 
On the other hand, it is highly probable that TR0 subjects will heuristically and automatically 
assume such a distribution of the payoffs, as it occurs in Laplace's well known “principle of 
insufficient reason'”. In any case, what is important here is that -thanks to this assumption- our 
structural model is able to estimate treatment effects, to such an extent that we are able test a 
null hypothesis in which CRRA in both TR0 and TR1 is the same. Since subjects have been 
randomized within treatments, a significant change in the CRRA coefficient between TR0 and 
TR1 has to be interpreted as a genuine treatment effect due to a change in information. 
In the maximum likelihood function routine, ρ is analyzed through the individual choices 
subjects make, which are expressed in function of the treatments, to identify how a different 
level of information influences people's risk attitude. 
Phase 1 observations are treated as a series of individual and independent choices between a 
certain outcome and a risky lottery, whose expected value is computed and compared to the 
sure prize. 
Instead, phase 2 data are used as a sequence of binary choices between lotteries. TR2 players 
know the true X and Y, so their ρ derived from a situation with no ambiguity. On the other 
hand, TR0 and TR1 players compute the lotteries expected values and variances, as function 
of the X and Y they figure out, and then the UB and the ΔU.  
A logit function is used to solve the usual binary choice model, explaining the  
P(k = 1) = P(ΔU > 𝟘) which is:  

P(k = 1) = �ÙÚ

WÛ�ÙÚ
       if LW is chosen 

P(k = 1) = �ÜÙÚ

WÛ�ÜÙÚ
     if Lg is chosen. 

The Fechner model is used, where people heterogeneity is expressed as function of a random 
error in the CRRA utility computation, i.e. ϵ ∼ N(0, σQ). In the whole of estimates we cluster 
all the observations made by the decisions of the same individual. 

3.2.2 Identification of the Behavioral Model 
Regarding the behavioral content of the structural model for the uncertain payoffs, we consider 
two alternative specifications, labelled as “naïve” and “sophisticated”, respectively, naïve. This 
means that the E[X] and the E[Y] are computed first and then plugged into the CRRA expected 
utility function to be maximized.  
Specifically:  

E[ X ] = Ý fQ(2,  z) dz
W

g
=
2
3 

E[ Y ] = Ý fW(2,  z) dz
W

g
=
1
3 
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where fD is the k-th order statistics of a uniform distribution in [0, 1]. 
Finally, the utility of a lottery k is:   

U(LD) = u(0) pgD + u(E[ Y ]) pÞD + u(E[ X ]) pßD + u(1) pWD 

A “sophisticated” decision maker, instead, will proceed based on a true bayesian updating, 
forming a prior distribution over the X and the Y, and then calculate the expected utility from 
these densities. Specifically:  

U(X) = Ý u(z)fQ(2,  z) dz
W

g
 

U(Y) = Ý u(z)fW(2,  z)
W

g
 dz 

where fW(⋅) and 𝑓Q(⋅)  are the first and second order statistics of a uniform distribution in [0, 1]. 
Finally, the utility of LD, 𝑈(𝐿') equals to: 

U(LD) = U(0) pgD + U(Y) pÞD + U(X) pßD + U(1) pWD 

In conclusion, the two models differ due to the order of integration. 

3.3 Results 

The “atom” of our analysis is the decision made by subjects and our research question is how 
their 𝜌 varies as function of the amount of information they receive, depending on their 
treatments, and how this process differs in the two distinct approaches, the naïve and the 
bayesian one. We also query whether one model is more used than the other. 

3.3.1 Treatment Effects  
Table 5.1 reports the result of the structural estimation of the 𝜌 as function of the different 
treatments, for both the two approaches.  
Our empirical evidence shows a certain degree of love for ambiguity, as the less information 
given to the subjects, the lower their risk aversion, and, consequently, the bigger their attraction 
toward risk and uncertainty. Moreover, the risk aversion coefficient estimated for TR0 is 
significantly lower than that estimated in TR2, although there is no statistically significant 
difference between estimated CRRA coefficients in TR0 and TR1. These findings are -
somewhat- in contradiction with the common wisdom of the literature, although they are 
consistent with other experimental literature that applies similar elicitation techniques as ours, 
such as Andersen et al [4]. 
When comparing our two behavioral models, as shown in Table 3.1, the estimated likelihood 
of the naïve approach is higher than that of the bayesian. This suggests that, based on our data, 
the naïve approach approximates better subjects' decision rules. 
Afterwards, we would like to identify the percentage of the subjects using each of the two 
models, i.e. the probability of them behaving either in a naïve or a bayesian way. 
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Table 3.1: Risk Aversion Coefficient for both the Naive and Bayesian approaches 
3.3.2 Naïve or Sophisticated? 
Up to now, we identified two different approaches individuals may follow to make their 
choices. The following step is to implement a mixture model to identify the probability of each 
observation being compatible with either model. 
We use a binary mixture model, since a finite number of types, the naïve and the bayesian, are 
assumed3. 
The main advantage of this approach that the assumption of different subjects operating 
according to a single model is avoided. The behavior of a typical subject is often traced back 
to the average behavior, but it is quite possible this is not an accurate representation of every 
subject under study. 
A possible answer to this issue could be the Average Treatment Effect, ATE, where a specific 
treatment effect is recognized to each individual. All subjects specific treatment effects are then 
assumed to vary randomly around an average, the ATE, i.e. the parameter being estimated. 
If the distribution is bell-shaped and symmetric, the ATE will provide a sensible measure of 
the effect of the treatment. In other words, the ATE measure is relevant when the treatment has 
universal applicability so that it is reasonable to consider the hypothetical gain from treatment 
to a randomly selected member of the population. 
However, this is not always the case, and this ATE can end up being far away from the actual 
treatment effect of any single subject. 
The approach adopted by a finite mixture model is presented below. A total number of types 
in the population is decided, and a specific behavioral model is assigned to each of them. The 
parameters of these various models are estimated altogether, along with the mixing proportions. 
                                                
3 In case of an "infinite" mixture model, a continuous variation in some parameters indexing individual type is 
assumed, as happens for random coefficient models or random effect models 
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In particular, we generate the probability πáâã, namely the probability of our subjects acting 
as bayesian in each of their decisions. 
We tried to estimate the ρäâå and ρáâã, i.e. the risk aversion coefficients for both the 
approaches, and 𝜋"#$ altogheter, but the likelihood function did not converge. Indeed, the 
likelihood functions of our models are very close. For this reason, we estimated this probability 
numerically, using a grid loop. 
Subsequently we let 𝜋"#$ moving inside a grid (0, 1), to finally choose the value that 
maximizes the likelihood function. 
A possible drawback of this numerical procedure is the fact that the 𝜋"#$ standard error cannot 
be estimated, as it is shown in Table 3.2. On the other hand, we can justify this statement by 
saying that our likelihood function is not function of it, given that it is just a product of 
probability. 
This numerical computation demonstrates that our subjects have a strong tendency to behave 
as naïve, given the estimation result of 𝜋"#$ = 0.2. 

 

 
 

Table 3..2: Mixture Model with 𝜋"#$=0.2 

4. Conclusions 

The thesis aims to explore how subjects approach ambiguous decision making when 

uncertainty is on a different level than the one usually investigated. In fact, although 

most decision problems in daily life involve different dimensions of uncertainty, the 

majority of models discussed in the economic literature deal with a specific form of 

uncertainty, the one on probability of the payoffs. In this investigation, uncertainty lies 

on the prizes of the lotteries people have to choose, rather than on their probabilities. 
We explore the question of whether there is some systematic different behavior that people 
exhibit while dealing with ambiguity. Specifically, we investigate how a change in the 
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information given to decision makers influences their risk aversion and, in order to find an 
answer to this question, we analyze the effects of some between subjects treatment. 
Our results suggest that increasing the amount of ambiguity, people modify their predisposition 
toward it, showing some degree of love in favour of it. Namely, the lower the information 
given, the lower their risk aversion. 
\\When the decision problem is faced under uncertainty, two different specifications are 
presented, the naïve and the bayesian. Indeed, according to the former, a pointwise estimation 
of the uncertain parameters is plugged inside the utility function. On the other hand, according 
to a more sophisticated paradigm, the bayesian, the prior distributions of these unknown 
parameters are used in order to compute the expected utility function, for each of them. 
A mixture model demonstrates a strong majority of people, almost 80%, adopting the naïve 
approach. 
In this thesis, we measured the treatment effects in the variation of $\rho$ parameter in two 
models, namely 𝜌æ#ç and 𝜌"#$. Albarrán et al [1] adopt a different identification strategy, 
where the 𝜌 is extracted from the TR2 subjects and the treatment effects are measured as the X 
and Y estimations. Although ours is a different approach, the results are more than compatible, 
that further confirm our main findings.   
It is my intention, in the future, to apply more complex models of decision making under 
uncertainty to these data, like the models suggested by Klibanoff et al. [11]. 
This project, which constitutes the core of the future research advisable in this thesis, shall also 
incorporate the possibility to extend uncertainty to more and different levels, like already been 
done in Eliaz et al. [19]. Furthermore, we wonder whether individuals have a higher 
predisposition toward the bayesian approach while facing multiple levels of ambiguity. 
This thesis, therefore, can be considered not only as a partial and exploratory analysis, but also 
as a good starting point for numerous and extended future investigations. 
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