
Libera Università Internazionale
degli Studi Sociali Guido Carli

PREMIO TESI D’ECCELLENZA

Deep Learning
for Asset Managers:
Drivers that Move Ferrari
on Wall Street
Linda Gentili
2020-2021

Libera Università Internazionale
degli Studi Sociali Guido Carli

Working Papaer n. 4/2020-2021
Publication date: January 2023
Deep Learning for Asset Managers: Drivers that Move Ferrari on Wall Street
© Linda Gentili
ISBN 978-88-6105-935-1

This working paper is distributed for purposes of comment and discussion only.
It may not be reproduced without permission of the copyright holder.

Luiss Academy is an imprint of
Luiss University Press – Pola Srl
Viale Pola 12, 00198 Roma
Tel. 06 85225485
E-mail lup@luiss.it
www.luissuniversitypress.it

Deep Learning for Asset Managers:
Drivers that Move Ferrari on Wall Street

Linda Gentili

abstract

In this paper, we present a new approach to time series forecasting based on novel
machine learning models. Time series forecasting is an important task for both tra-
ditional statistics and modern deep learning, with the first having held the leading
role in the forecasting field for a long time and the second having just started to sys-
tematically outperform the statistical models’ state-of-the-art.

The approach we employ addresses the forecasting task as a stock-price forecasting
problem and compares the performances obtained with the traditional ARIMA mod-
el to those obtained with the sequential step-by-step modelling of the LSTM and the
novel attention-based modelling of the Transformer. We proceed with an in-depth
study of the Transformer neural networks by comparing the performances of the orig-
inal Transformer architecture, which has established itself as the state-of-the-art in
all natural language processing tasks, with those of the novel Temporal Fusion Trans-
former, introduced by Google in the 2019 to specifically apply the attention-based
model to complex, high frequency and highly irregular time series frameworks where
the temporal pattern is a core component to model.

1. introduction

The frameworks for time series forecasting always require balancing the accurate-
ness of the predictions with the robustness of good-generalizing forecasting mod-
els: a model that perfectly fits an identified pattern among variables must be discarded
if it fails to forecast the time series when there’s a change in the equilibrium of the
environment; on the opposite, a model that doesn’t just follow an initiated trend among
variables but prevents a shift to a different equilibrium must be chosen for the pursed
task as it meets the criteria for being a universal approximator: its accurateness and
robustness derive from the fact that it identifies dynamical relations among variables
and understands of how those relations change with a changing environment.

Both the academic community and the professionals of the financial industry have
always been interested in forecasting financial time series, but with no surprise they’ve
encountered major problems when applying the forecasting frameworks to the high-
ly volatile and non-stationary nature of the stock market. In more recent times, the
financial forecasting task has been addressed with a completely renewed interest and
the drivers behind that switch have been summarized in two main factors: first, the

4 deep learning for asset managers

enormous quantity and the different types of information we have at disposal to feed
any forecasting models; second, but not less important, the computational capabilities
of the technology we rely upon to train increasingly complex forecasting models.

A well-known example of this paradigm is the Medallion Fund, a hedge fund found-
ed by Jim Simons in 1988 which has generated average annual returns of 66% since
first started, setting the record of 5 times greater returns than those of the S&P 500
but with a similar standard deviation (18.7% vs 17.0%, respectively). As clearly ex-
plained by Gregory Zuckerman in his best-selling book “The man who solved the mar-
ket”1, the reasons behind those performances are mainly linked to the leverage built
upon the two factors named above−data and technology − both used through so-
phisticated mathematical and deep learning models to forecast the trends in the fi-
nancial market and in its sentiment.

Without entering the details of the Medallion Fund trading models, we just bring
back the words used by J. Hull in its “Machine Learning in Business”2 book to describe
Jim Simons’ approach. Those words can effectively summarize the reasons that moved
the interest behind this work:

“New data sources are becoming available all the time. One approach is to try
and be one step ahead of most others in exploiting these new data sources. An-
other one is to develop better models than those being used by other and then
be very secretive about it. Renaissance Technology provides an example of the
second approach. It has been very successful at using sophisticated models to un-
derstand stock price patterns.”

Building upon those premises, this work applies current state-of-the-art forecasting
models to predict the stock price of Ferrari, the Italian luxury car manufacturer found-
ed by Enzo Ferrari in 1947 in Maranello and quoted on the NYSE in 2015 and on Bor-
sa di Milano in 2016.

The paper is organized as follows: Section II explores the background of this work
and the related works, highlighting the models that are considered state-of-the-art
in time series forecasting as of today. Section III addresses the theory behind this work,
with a particular focus given to the models developed on later sections. Section IV
sets the mathematical formulation of this work’s forecasting task. Section V presents
the methodology, with its sub-sections describing in detail each step of the work. Sec-
tion VI presents the analysis of the results. Section VII summarizes the paper’s con-
tent and draws the conclusion and future possible developments.

1. G. Zuckerman, The man who solved the market: how Jim Simons launched the quant revolution,
Penguin Putnam Inc, 2019.

2. J. Hull, Machine Learning in Business, Independently published, 2019.

5

2. background and related works

According to the Efficient Market Hypothesis (EMH)3 4, a financial time series is near-
ly unforecastable because prices reflect all relevant available information and, as soon
as new information come out, that information is immediately reflected into prices
by market participants seeking arbitrage opportunities. The conclusion is that there’s
no chance to beat the market, meaning that market participant cannot earn above
average returns without taking additional risks. However, the empirical evidence has
questioned the EMH’s assumptions through times, showing that at least two out of
the three main assumptions behind the EMH are unrealistic:
- investors act as rational agents, aiming at maximizing their profits;
- all market participants share the same information at the same time.

We leave out of our discussion the third assumption of “perfect competition in the
market”, because it can be considered validated by the large number of investors par-
ticipating in the market. Instead, focusing on the first two assumptions, we can clear-
ly see the criticisms of the EMH: both the academic research and the empirical ev-
idence prove that investors don’t always take their decisions rationally but, most of
the times, in a biased manner and those biases have been identified in behaviors like
the representative bias5, the overconfidence bias6 and also the well-known risk-aver-
sion behavior in contrast to the risk-neutrality assumption of the EMH7 8 9; moreover,
in this new world governed by big-data, information is not shared democratically and
freely among all market participants and, even if one argues that’s the case, there
would still be the problem of processing all that information as fast as those disposing
of the right technology to do it. Aligning with that consideration, O’Hara10 pointed
out how portfolio managers need to think beyond the information acquisition prob-
lem because, today, there are technologies able to get fundamental information more
quickly than any human analyst can:

deep learning for asset managers

3. E.F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical Work”, The Journal
of Finance, vol. 25, no. 2, pp. 383-417, 1970.

4. P. A. Samuelson, “Proof That Properly Discounted Present Values of Assets Vibrate Random-
ly”, The Bell Journal of Economics and Management Science, vol. 4, no. 2, pp. 369-374, 1973.

5. D. Kahneman, J.L. Knetsch, R.H. Thaler, “Anomalies: The Endowment Effect, Loss Aversion,
and Status Quo Bias”, Journal of Economic Perspectives, vol. 5, no. 1, pp. 193-206, 1991.

6. J. Scott, M. Stumpp, P. Xu, “Overconfidence Bias in International Stock Prices”, 2003.
7. S. LeRoy, “Risk Aversion and the Martingale Property of Stock Prices”, International Economic

Review, vol. 14, no. 2, pp. 436-46, 1973.
8. M. Rubinstein, “The Valuation of Uncertain Income Streams and the Pricing of Options”, Bell

Journal of Economics, vol. 7, no. 2, pp. 407-425, 1976.
9. J. Robert, E. Lucas, “Asset Prices in an Exchange Economy”, Econometrica, vol. 46, no. 6, pp.

1429-1445, 1978.
10. M. O’Hara, “High frequency market microstructure”, Journal of Financial Economics, 2014.

6 deep learning for asset managers

“Purchasing early access to the information and processing them faster than oth-
ers have a discriminative effect on the market: the common information of the
EMH leaves its place to huge amount of data on the hand of those with the most
sophisticated technologies”.

Moving from these premises to structure this work, we consider different approaches
widely used to predict and exploit the patterns of a financial market that may diverge
from its efficient status.

Stock prices’ predictions are traditionally based on two different approaches:
a technical and a fundamental analysis, depending on the type of information they
rely on.
Technical analysis: Technical analysis refers to the study of past prices’ movements −
or any measure derived from them − to predict their future behavior. That type of anal-
ysis assumes that there are patterns in the prices that repeat themselves through time and
being able to spot them means being able to predict future price movements. One of the
most widely used family of models exploiting those technical patterns includes the Au-
toregressive (AR) model, the Autoregressive Moving Average (ARMA) model and the Au-
toregressive Integrated Moving Average (ARIMA) model for linear and stationary time
series. Despite their simplicity and robustness of results, those models fail in modelling
more complex nonlinear systems like the financial time series. Those frameworks, indeed,
leave space for more sophisticated nonlinear statistical methods and, given the recent
progress in the field, for deep learning methods.

Among the best-known neural networks’ architectures, Recurrent Neural Net-
works (RNN), in particular Long Short-Term Memory (LSTM) networks11, have been
the state-of-art for modelling dependencies in time series till recently. In 2019, O.
B. Sezer et al.12 published a survey on general trends in financial deep learning mod-
els and confirmed the absolute dominance of RNN-based models for financial fore-
casting tasks (accounting for almost 51% of the overall deep learning models). W.
Bao et al13 used LSTM networks to predict one-step ahead prices of six stock indices
using as input variables different trading data, technical indicators and macroeco-
nomics variables; the results obtained confirm the superiority of the LSTM in terms
of predictive accuracy with an average MAPE of 0.011 for the S&P 500 Index on a
training set of 6 years. Similarly, T. Fisher et al.14 deployed LSTM networks to pre-
dict directional movements of the S&P 500 stock constituents from 1992 until 2015,
finding that LSTM networks outperform memory-free classification methods like ran-

11. S. Hochreiter; J. Schmidhuber, “Long Short-Term Memory”, Neural Computation, vol. 9, no.
8, pp 1735-1780, 1997.

12. O. Berat Sezer, M. Ugur Gudelek, A. Murat Ozbayoglu, Financial Time Series Forecasting with
Deep Learning : A Systematic Literature Review: 2005-2019, Elsevier Ltd, 2019.

13. W. Bao, J. Yue,Y. Rao, A deep learning framework for financial time series using stacked autoencoders
and long-short term memory, Boris Podobnik, 2017.

14. T. Fischer, C. Kraussm, “Deep learning with long short-term memory networks for financial mar-
ket predictions”, European Journal of Operational Research, vol. 270, no. 2, pp. 654-669, 2018.

7

dom forest (RAF), deep neural net (DNN) and logistic regression classifier (LOG) with
mean returns of 0.46 percent before and 0.26 percent after transaction costs and a
standard deviation of 0.0209.

Despite their notable task-specific performances, recurrent methods show lim-
itations in modelling longer-term and complex relations in sequence data: the van-
ishing and exploding gradient problem is emphasized by RNNs while the overfitting
problem gets worsened by the step-by-step processing of the LSTMs. In 2018, the
Google team of DeepMind introduced a novel neural network architecture called Trans-
former 15 that, instead of processing data in an ordered manner, like sequence-aligned
models, processes an entire sequence of data altogether and uses self-attention mech-
anisms to learn complex dependences in the sequence. The Transformer network soon
became the state-of-the-art for Natural Language Processing (NLP) tasks and es-
tablished cutting-edge results also in the financial field. Q. Ding et al.16 were prob-
ably the first ones to apply a Transformer model in financial time series prediction.
They compared the performance of their own Transformer variant with convolutional
neural network, LSTM network, attention-based LSTM and original encoder-only
Transformer using daily Nasdaq data and 15-minute data from China A-shares; they
showed that their variant of the Transformer reached an accuracy of prediction of
57.3 percent versus the 56.01 percent of the original Transformer and the 53.81 per-
cent of the LSTM, while the other neural networks performed more poorly. Keep-
ing on with innovative Transformer variants meant to specifically address financial
tasks, H. Zhou et al.17 introduced the Informer, a Transformer-based structure that
deals with the problem of long sequences by adding a layer of sparse attention to the
original network in order to reduce the model complexity and the memory usage,
still maintaining comparable performances; similarly, E. Ramos-Pérez et al.18 in-
troduced the Multi-Transformer network that merges several multi-head attention
mechanisms to improve the stability and the accurateness of the output.

Moving on till most recent days, the new deep learning frontier is the so-called
interpretable deep learning: despite better performances of Seq2Seq models (like the
Transformer network) in comparison to iterative sequence models (like the LSTM
network), the interpretability of their results still remains challenging and the ur-
gency to read inside those so-called black-boxes has just started to take off19. A nov-

deep learning for asset managers

15. A. Vaswani, N. Shazeer, N. Parmar et al., “Attention Is All You Need”, 31st Conference on Neu-
ral Information Processing Systems, p. 15, 2017.

16. Q. Ding, S. Wu, H. Sun et al., “Hierarchical Multi-Scale Gaussian Transformer for Stock Move-
ment Prediction”, Proceedings of the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, 2020.

17. H. Zhou, S. Zhang, J. Peng et al., “Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting”, p. 8, 2021.

18. E. Ramos-Pérez, P.J. Alonso-González, J.J. Núñez-Velázquez, “Multi-Transformer: A New Neu-
ral Network-Based Architecture for Forecasting S&P Volatility”, Mathematics, 2021, 2021.

19. F. Fan, J. Xiong, M. Li, G. Wang, “On Interpretability of Artificial Neural Networks: A Survey” 2021.

8 deep learning for asset managers

el architecture, the Temporal Fusion Transformer (TFT)20 introduced by Google in
2021, paved the way towards the interpretable results’ objective: while obtaining sig-
nificant performance improvements over state-of-the-art benchmarks, it enables new
forms of interpretability on three main components of the output, specifically the
variable selection network, the persistent temporal patterns and the significancy of
the occurred events.

Fundamental analysis: One major limitation of technical analysis is that it is incapable
of unveiling the rules that govern the dynamics of the market beyond price data. Fun-
damental approaches, on the contrary, seek information from outside market-his-
toric data such as geopolitical, financial environment and business principles.

There have been many attempts to mine news data to better predict market trends.
Early in 2015, X. Ding et al.21 proposed a deep learning method for event-driven stock
market prediction, extracting events from textual news and using deep convolutional
neural networks to model both short-term and long-term influences of events on stock
price movements; they showed to outperform baseline methods by nearly 6 percent,
recording an accuracy of prediction of 64.21 percent. Later in 2018, Z. Hu et al.22 de-
signed a Hybrid Attention Networks (HAN) to predict stock trends based on the se-
quence of recent related news; their model achieved the best accuracy of 0.478 com-
pared to attention-based models, RNN and RF and the highest annualized return of
0.611 obtained by investing in the top 40 stocks accordingly to the model versus a
market performance of 0.04.

Another major aspect in market news mining is the sentiment analysis of public news
and social media, used to predict market trends. C. Ko et al.23 combined the technical
analysis with the fundamental one by including news articles and PTT forum discus-
sions to understand market participants’ sentiment; they found that the inclusion of
news and forums’ data could improve the accuracy of the predictions by an average of
0.23, as measured by the Root Mean Squared Error (RMSE) metrics. Behind those mod-
els trying to capture the sentiment implied by written words, there’s a neural network
architecture that has established itself as a cutting-edge framework for text-classification
tasks: the Bidirectional Encoder Representations from Transformers (BERT)24.

20. B. Lim, S.O. Arik, N. Loeff, T. Pfister, “Temporal Fusion Transformers for Interpretable Mul-
ti-horizon Time Series Forecasting”, International Journal of Forecasting, vol. 37, no. 4, pp. 1748-
1764, 2021.

21. X. Ding, Y. Zhang, T. Liu, J. Duan, “Deep Learning for Event-Driven Stock Prediction”, Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

22. Z. Hu, W. Liu, J. Bian, X. Liu, T.-Y. Liu, “Listening to Chaotic Whispers: A Deep Learning Frame-
work for News-oriented Stock Trend Prediction”, WSDM 2018: The Eleventh ACM Interna-
tional Conference on Web Search and Data Mining, 2018.

23. C.-R. Ko1, H.-T. Chang, LSTM-based sentiment analysis for stock price forecast, Feng Xia, 2021.
24. J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, “BERT: Pre-training of Deep Bidirectional Trans-

formers for Language Understanding”, Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, vol. 1, 2019.

9

3. forecasting models

In this section we provide the theorical bases behind the models we’re going to use
in the methodology: we start from the simple statistical ARIMA model and then we
move towards more sophisticated deep learning models.

3.1 ARIMA

The Auto-Regressive Integrated Moving Average (ARIMA) model is a well-known sta-
tistical approach used to model dynamical systems which show the properties of lin-
earity and stationarity.

In order to make a time series xt stationary, we compute its dth difference, where
the d term represents the number of nonseasonal differencing operations required
to eliminate its trend component; then, we treat the resulting time series yt as a
weakly-stationary one and we model it using the combination of two components:
- its lagged time series values: Auto-Regressive (AR) component;
- the moving average of its lagged forecasting errors: Moving-Average (MA) com-

ponent.

Once obtained those components, the ARIMA model is entirely identified by the tu-
ple (p, d, q), where p and q define the orders of AR and MA, and d specifies the or-
der of the differencing equations. p and q orders must be chosen empirically; one
of the most used statistics to check for the rightness of the selected orders is the Ljung-
Box statistics that check the closeness of the residuals obtained with the selected ARMA
(p, q) model to a white noise process.

Once the ARIMA (p, d, q) is correctly specified in all its components, we can mod-
el the differenced time series yt through the following stochastic process:

where yt is the dth differenced time series, ϕi is the autoregressive component
of order p≥0, θi is the moving average component of order q≥0 and {εt} is a white
noise process with mean zero and standard deviation σε.

3.2 Deep Learning Models

The employment of neural networks to solve nonlinear problems wasn’t the clear so-
lution till just 25 years ago when machine learning finally started its breakthrough.
To depict the context at that time, we bring back the analysis conducted by Zhang
et al.25 in 1998 when reviewing the state-of-the-art in forecasting with Artificial Neu-

deep learning for asset managers

!! "#$" %&$#
$

#%&

!!'& % '! (&)#
(

#%&

'!'#!

25. G. Zhang, B.E. Patuwo, M.Y. Hu, “Forecasting with artificial neural networks: The state of the
art”, International Journal of Forecasting, vol. vol. 14, no. issue 1, pp. 35-62, 1998.

10 deep learning for asset managers

ral Networks (ANNs): despite the attractive features of ANNs and their great potentials,
academic concerns where mainly driven by two unsolved questions:
- Given a specific forecasting problem, how do we systematically build an appropri-

ate ANN that is best suited for the problem?
- What’s the best algorithm to train ANNs?

Answering the first question meant knowing exactly how to select the most appro-
priate architecture of the ANN, given a specific problem formulation and input set-
tings. Said differently, it meant finding the optimal neural network structure (right
number of nodes, hidden layers and output nodes; right interconnections among
nodes; right activation functions etc.), that would have consistently outperformed
all the others.

Answering the second question, instead, meant finding that training algorithm
that would have consistently guaranteed the optimal solution for a general nonlin-
ear optimization problem in a reasonable amount of time. At the time the question
was formulated, the most popularly used training method was the stochastic gra-
dient descent, with the backpropagation algorithm used to efficiently compute the
gradient26. However, with backpropagation the learning process was still subject the
vanishing and exploding gradient problem.

That second question got answered just a little later in time, thanks to the dis-
covery of new optimization and regularization techniques that made the breakthrough
of deep learning methods possible. In the following bullet list, we present the ini-
tial techniques used by the research community and the most relevant innovations
that replaced them:
- sigmoid activation functions were predominant but they made the vanishing gra-

dient problem worse because they saturated neural network nodes, interrupt-
ing the learning process; the introduction of Rectified Linear Unit (ReLU) func-
tions improved the computational efficiency of the learning process and partially
solved the vanishing gradient problem by avoiding the nodes’ saturation in the
positive region;

- Gaussian weight initializations were the standard but brought activation functions
very close to 0 or 1, hence enhancing the vanishing gradient problem; Xavier ini-
tializations solved the problem by performing a weight normalization dependent
on the size of the input;

- the stochastic gradient descent method was very slow in the convergence; the Adam
optimizer27 method speeded it up by making use of Momentum28 and Adaptive
Learning Rates to gradually reduce the velocity of learning and avoid overstep-
ping local minima;

26. M. Nielsen, Neural Networks and Deep Learning, 2018.
27. J.B. Diederik, P. Kingma, “Adam: A Method for Stochastic Optimization”, International Con-

ference on Learning Representations, 2015.
28. Y. Nesterov, “A method for unconstrained convex minimization problem with the rate of con-

vergence o(1/k^2)”, Mathematics, 1983.

11

- finally, regularization techniques were introduced to avoid overfitting problems:
L-norm regularizations29 30 helped keeping the weights small so that the network
behavior wouldn’t change too much by changing few random inputs; dropout31
techniques, instead, worked on the structure of the network, rather than on the
cost function, by randomly masking out some network’s nodes to minimize the
risk of overfitting.

Thanks to those new optimization and regularization techniques, the learning pro-
cess of ANNs improved to the point that also the academic community – at the be-
ginning more skeptical about machine learning methods – did recognize the con-
sistency and accuracy of the obtained results. Then, the focus shifted to the first ques-
tion: the discovery of the best ANNs structures.

Narrowing our interest to the time series forecasting task, we compare the per-
formances of the most recent state-of-the-art forecasting models:
- Recurrent Neural Networks (RNN), which perform direct sequence processing

and obtain best results through LSTM networks, whose learning process is op-
timized to keep memory of longer sequencies;

- Sequence-to-Sequence (Seq2Seq) architectures, which solve machine learning
tasks where both inputs and outputs are sequences and obtain best results through
Transformer neural networks employing attention mechanism to correctly
weight the sequence’s components.

Recurrent Neural Networks: Unlike traditional feedforward neural networks, Re-
current Neural Networks (RNNs) are a family of neural networks specifically designed
to process sequential data. Indeed, their peculiarity is the presence of recurrent loops
that make the information flow round in loops rather than only forward in the net-
work.

Mathematically, we can represent a RNN as a dynamical system st with θ shared
parameters. At each time step t, the status of the system depends on its status at the
previous time step t-1:

The current and past values of the system are defined by both the input vector
x and the hidden state vector h. The value of the system st’s hidden state ht is obtained
from the function gt, which takes the whole past sequence xt as input and produces
the current hidden state ht:

deep learning for asset managers

29. A.E. Hoerl, R.W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems”,
Technometrics, vol. 42, no. 1, pp. 80-86, 2000.

30. R. Tibshirani, “Regression Shrinkage and Selection via the Lasso”, Journal of the Royal Statistical
Society, vol. 58, no. 1, pp. 267-288, 1996.

31. G.E. Hinton, N. Srivastava, A. Krizhevskyet al., “Improving neural networks by preventing co-
adaptation of feature detectors”, 2012.

!! " #$!!"#% &'!

12 deep learning for asset managers

where gt can be factorized into repeated applications of the same transition func-
tion ft and parameters θ={W,b}, which are the learnt weights and biases shared across
all time steps. This factorization makes it possible to learn a single model f that op-
erates at all time steps rather than a separate model gt for each time step.

Based on that definition of hidden state vector ht, a simple RNN can be described
through the following system of two equations, taking as parameters the Kx1 vec-
tor of inputs xt, the Nx1 vector oh hidden state ht and the Lx1 vector of outputs yt:

where Why is the LxN matrix of weights connecting N hidden units to L outputs,
Wxh is the NxK matrix of weights connecting K inputs to N hidden units and Whh
is the NxN matrix of weights connecting N hidden units from time t-1 to time t.

The first equation of the system f(ut) is called observation function and describes
the hidden layer activation function; the second equation of the system g(vt) is called
state equation and describes the output layer activation function. The RNN neural
network learns those two functions through the Back-Propagation-Through-Time
(BPTT) algorithm which updates the weight matrices by minimizing the cost func-
tion C:

where γ is the learning rate. The minimization of the cost function in RNNs is
done as in feedforward neural networks, hence by minimizing the backpropagated
error terms from the output layer to the first hidden layer. However, there’s a prob-
lem arising with the presence of recurrent loops: since weight matrices are shared
and kept equal across all time steps of recurrent loops, going backward in the net-
work is equivalent to multiply the same weight w by itself many times (wt), causing
the product to either vanish or explode depending on the magnitude of w. In par-
ticular, the gradient of longer-term dependences has exponentially smaller magni-
tude than the gradient of shorter-term ones: this makes it more difficult and time ex-
pensive to learn longer term patterns whose signal is hidden by the smallest fluc-
tuations of the shorter term interactions. In 1994, Y. Bengio et al.32 showed that gra-
dient-based optimization techniques become increasingly difficult when we increase
the span of dependence, making the probability of a successful RNN training pro-
cess rapidly reach 0 for sequences of length of only 10- or 20-time steps.

!! "#$!%&!' &!"#' &!"$' (' &$' &#)!
! "#$!"#% &!' ()*!

!"! # $%&"#'! (&##"!$%) # $%*!)+! # ,-&#&"!. # ,%/!) !

! "!# $ %&%!!

32. Y. Bengio, P. Simard, P. Frasconi, “Learning long-term dependencies with gradient descent is
difficult”, IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.

13

Various approaches have been proposed over time to reduce the difficulty of learn-
ing longer term dependences through RNNs. In 1997, S. Hochreiter and J. Schmid-
huber introduced a novel, efficient, gradient-based method called Long Short-Term
Memory (LSTM)* that solved the vanishing and exploding gradient problem
through the application of gating structures that control the information flow in the
network.

LSTM: Long Short-Term Memory (LSTM) neural networks are a type of RNN em-
ploying three gates to modulate the information flow across memory cells. Each gate
is composed of a sigmoid neural network layer and an element-wise multiplication;
the sigmoid layer returns a number between 0 and 1 which determines how much
information is passed through the gate itself. The three gates present in each LSTM
cell are the following:
1. Forget Gate: it determines how much information from the previous hidden state

ht-1 and the current input x_t must be forgotten;
2. Input Gate: it decides what of the new information coming from the previous hid-

den state ht-1 and the current input xt is to be stored in the current cell state seg-
ment Ct, hence updating the previous Ct-1; the cell state segment of each LSTM
unit is responsible for the long-term memory of the NN;

3. Output Gate: it controls the information to be stored into the current hidden state
ht, based on the previous hidden state ht-1, the current input xt and the modi-
fied cell state Ct; the hidden state ht is passed to the next LSTM cell as the chan-
nel responsible for the short-term memory of the NN.

Keeping the two types of memory separated − the long-term one captured by the
cell state Ct and the short-term one by the hidden state ht − allows the learning pro-
cess to be aware of the fluctuations of the two without incurring in the vanishing or
exploding gradient problem.

The figure below represents graphically the structures just described.

Figure 1: LSTM Architecture

deep learning for asset managers

* See note 11.

14 deep learning for asset managers

There’s a major problem in the sequential nature of LSTMs that can’t be solved
through the gating mechanism: a cell state Ct can be computed only after having com-
puted all cell states {Ct-1, Ct-2…} at previous time steps. This means that not only
parallelization is not possible but also that LSTMs tend to experience overfitting prob-
lems: indeed, they propagate the error term of one-step-ahead prediction into ac-
cumulated errors of multiple-steps-ahead predictions.

In 2017, the Google Brain team proposed a new simple network architecture that
dispenses with recurrence entirely, shows superior quality in the predictions and is
more parallelizable: the Transformer neural network*.

Transformer: The Transformer neural network is a Seq2Seq architecture that as-
sociates an input sequence to an output sequence. It’s composed of two main struc-
tures: an Encoder and a Decoder.

The Encoder is composed of an input layer, a positional encoding layer and a stack
of N=6 identical encoder layers. The input layer maps the input sequence (x1,…, xn)
to a vector of dimension dmodel=512 called “embedded vector”; the positional en-
coding layer adds to the input vector the information about the position of each in-
put into the sequence: a necessary step to keep memory of the relative positioning
of inputs which are taken all together as a sequence rather than one by one like in
RNNs; finally, the six identical encoder layers are all composed of two sub-layers:
- a Multi-Head Attention sub-layer:

the capability of the network to capture nonlinearities in the input sequence lies
mainly in the attention modules. Within each attention module, an entry of the
sequence named “query” (Q) is compared to all other sequence entries named
“keys” (K) through the dot-product attention, scaled by the dk embedding di-
mensionality; the output of the dot-product is then used to weight the relevance
of the sequence entries named “values” (V) with respect to the specific “query”
(Q). Hence, the self-attention mechanism takes the following form:

The self-attention mechanism is also parallelizable: the scaled dot-product at-
tention can be performed in parallel on h linear projections called “heads” of the
queries, keys and values. The outputs are dv-dimensional values, which are con-
catenated and projected to be passed to the next sub-layer. This is the so-called
multi-head attention mechanism, which allows the model to simultaneously con-
sider the difference representation subspaces of each input at different positions.
It takes the following form:

* See note 15.

!""#$"%&$'() *) +, - .&/"012 3(*!45"6+!

15

where the projections are parameter matrices Wi
Q ∈ Rdmodelxdk , Wi

K ∈ Rdmodelxdk,
Wi

V ∈ Rdmodelxdv and Wi
O ∈ Rhdvxdmodel. The standard Transformer makes use of h=8

heads of attentions with dimensions dk=dv=dmodel/h=64.

F i -

gure 2: Multi-Head Attention mechanism

- a fully connected Feed-forward sub-layer:
the feedforward layer is a fully connected Feed-forward network consisting of
two linear transformations with a ReLU activation in between:

where x is the input to the feedforward layer. This sub-layer allows to transform
the attention vectors into a form that is acceptable to the following encoder or
decoder layer.
On the other side, the Decoder is composed of an output embedding layer, a po-
sitional encoding layer, N=6 identical decoder layers and an output layer. The
target sequence is first fed to the output embedding and the positional encoding
layers, which produce an encoded representation for each element of the target
sequence. Then, that embedded sequence is given as input to the six identical
decoder layers, each of them composed of three sub-layers:

deep learning for asset managers

!"#$%&'()*+, -, ./ 0 1234($*5'()!, 6 , 5'()"/7#8!
95':'85'()$ 0 ;$$'3$%23*+7$%, -7$&, .7$'/!

!!"#$% & '()#*+ $,! - .!%," - ."!

16 deep learning for asset managers

- a Masked Multi-Head Attention sub-layer:
while the Encoder is designed to attend all inputs in the sequence, the Decoder
is modified to attend only earlier positions in the sequence: a mask is applied to
future positions so that the Multi-Head Attention cannot look at the element it
has to predict or at subsequent elements in the target sequence.

- a Multi-Head Attention sub-layer:
it works identically to the Encoder Multi-Head Attention layer but receives different
sources of inputs: the queries from the previous decoder layer, and the keys and
values from the output of the Encoder.

- a fully connected Feed-forward sub-layer.

Finally, the output layer transforms the output of the last decoder layer through a
fully connected layer and a soft-max layer to generate the prediction of the next el-
ement of the output sequence.

From the above description of the Transformer neural network, we can imme-
diately see numerous differences with RNNs and also the advantages that derive from
using Seq2Seq models:
- RNNs takes the sequential data element by element (one step at time) and pro-

cess them sequentially, starting from the beginning of the sequence to its end;
Transformers take the entire input sequence all at once and preserve its sequential
nature through positional embeddings, hence making themselves much more par-
allelizable than RNNs;

- RNNs can remember of forget parts of the previously stored information, de-
pending on whether they find them important or not for the current memory state;
Transformers rely on two specialized units (Encoder and Decoder) to perform
the two tasks separately: being able to access all relevant past information at each
time step as summarized by the Encoder and exploiting them to predict future
values through the Decoder;

- RNNs, including LSTMs, decide which information of longer-term dependences
is worth to remember in the current cell state but cannot assign more importance
to some parts of the input sequences; Transformers, instead, use the Encoders
to capture dependences on the input sequences and summarize the weights as-
signed to each of them to the Decoders.

However, there’s a major drawdown in using Transformers to process longer time-
series: since the representation vector computed by the Encoder and given as input
to the Decoder is a summarized representation of all information captured by the
Encoder, that representation becomes increasingly poor when longer-term depen-
dences need to be encoded into the intermediate vector.

In 2019, the Google team of Deep Mind published a new architecture of the orig-
inal Transformer called Temporal Fusion Transformer (TFT) with the specific objec-
tive of making it more adequate to encode longer term dependences, together with
some other innovative objectives we describe in the next paragraph*.

* See note 20.

17

Temporal Fusion Transformer: The TFT neural network was specifically designed
to solve two main characteristics of realistic scenarios encountered in multi-horizon
forecasting tasks: the first is the heterogeneity of inputs to analyze; the second is the
necessity to generalize the findings by looking into the mechanics that led the NN
to formulate specific predictions, where the mechanics can either be the static pat-
terns among input variables or their temporal dependences: in general, we could say
we’re interested in the interpretability of NN results.

The architecture of the TFT is very complicated as meant to reach state-of-art re-
sults for multi-horizon forecasting tasks by using the best components of LSTMs and
Transformers but with the flexibility of Gated Residual Networks (GRN) that allow
to skip all unnecessary components of the architecture whenever the task doesn’t re-
quire that additional complexity.

Focusing only on the two main characteristics of the TFT described above, we
start by explaining where its ability to deal with heterogeneous inputs comes from.
The TFT is specifically designed to digest and exploit information about the category
the fed input sequence belongs to:
- observed past inputs:

time-dependent inputs that can only be observed in the past and be known as
soon as they occur, but cannot be anticipated;

- known future inputs:
time-dependent future inputs that are known also in the past, like specific future
times, events or occurrences;

- static covariates:
features that don’t change over time and describe the context where time-de-
pendent features develop, that are either geographical contexts, temporal ones
or categorical types of context.

The figure below shows how those features are allocated in the timeline fed to the TFT.

deep learning for asset managers

Figure 3: Temporal Fusion Transformer inputs

18 deep learning for asset managers

Finally, we describe the second characteristic of the TFT of making its results in-
terpretable. To introduce the concept, we rely on the words used by the Google team
in the original paper:

“Several Deep Learning methods have been proposed, but they’re typically “black-
box” models which don’t shed light on how they use the full range of inputs pre-
sent in practical scenarios. In this paper, we introduce the TFT, a novel attention-
based architecture which combines high-performance multi-horizon forecast-
ing with interpretable insights into temporal dynamics”.

The TFT allows to draw intuitions from three levels of interpretability, specifically
to identify the following aspects of the obtained outputs:
- globally important variables:

the innovation of the TFT come from the combination of a Variable Selection Net-
work with an Interpretable Multi Head Attention layer. The Variable Selection Net-
work allows to select the most relevant input variables at each time step and to
suppress the noisy ones that could negatively impact the quality of the predic-
tions; after that step, all selected variables belonging to each input category are
fed into the Interpretable Multi Head Attention layer that performs a scaled-dot
product attention with multiple heads as the original Transformer does but out-
puts each feature weight as the average of the weights assigned to that feature
by all heads: that average allows to store each feature’s weight at each time step,
hence to understand which are the globally important variables for the TFT giv-
en the task.

- persistent temporal patterns:
the persistency of temporal patterns in input sequences is measured by looking
at the features contribution to future predictions at defined fixed lags in the past,
given various future horizons. Whether there’s consistency or variability in the
relations between the attention weights assigned to input sequences determines
the persistency of a specific temporal pattern or not.

- significant events and regime changes:
the possibility of identifying regime changes in the input dependences is strict-
ly correlated to the previous aspect of interpretability: sudden changes in per-
sistent temporal patterns indicate the occurrence of significant events or
changes in regimes that have an impact on subsequent predictions because re-
lations among features’ weights have changed.

Still not tested in many concrete applications, the Temporal Fusion Transformer promis-
es to outperform its benchmarked forecasting models in predictions’ accuracy while
encountering one major desire of today research community: the interpretation of
results.

19

4. problem statement

We formulate Ferrari stock price forecasting as a supervised machine learning task:

Each data point X(i) is a vector containing multiple features and each prediction
Y(i) is a scalar representing the forecasted Ferrari closing price.

We employ four different forecasting methods which we compare on the Root
Mean Square Error (RMSE) of their results:

The best performing method is the one that minimizes the RMSE of out-of-sam-
ple predictions. We select the ARIMA model as our task’s baseline; we further select
the LSTM network, the Transformer network and the Temporal Fusion Transformer
network as deep learning models.

We expect deep learning models to outperform the baseline ARIMA model; we
further expect Transformer-based models to obtain better performances than mod-
els without Seq2Seq structures and, among them, the Temporal Fusion Transformer
to do better than the original Transformer as actually designed to predict long se-
quences with irregular temporal patterns.

5. data and methodology

5.1 Features Selection

We utilize daily data downloaded from Refinitiv Workplace* from the 23rd October
2015, immediately after Ferrari IPO at the NYSE, to the 1st February 2022, cover-
ing a total period of 2293 business days.

The features selection process directly involved the Investor Relation Team of Ferrari,
whose business knowledge helped identifying three main sources of data to draw from:
1) Company-specific data:

we combine a technical approach with a fundamental one, based on the evidence
of greater alphas generated when using combined strategies rather than stan-
dalone strategie 33 34:

deep learning for asset managers

!"#$%&'%& "%()*& *"+$& ,$-"$,&.& /0%*'"%"%!&1&2'"34&2'*'& !"!"#$%# $ $ $ # "!"#&%# "!"%%5& *6$& 70-$/',*"%!&+02$3&
-$*)-%,&'%&0)*()*&*"+$&,$-"$,&8&/0%*'"%"%!&9&,*$(,:'6$'2&(-$2"/*"0%,&!&!"'&%# $ $ $ # &!"'(#&%# &!"'(%%5&;"*6&' ()&70-&<$=)$%/$&+02$3,&'%2&' *)&70-&<$=><$=&+02$3,?&&

!"#$ % &'()*! +)!,"#

!$%
!

* Refinitiv, from Thomson Reuters, is one of the largest global providers of financial market data
and infrastructures. Refinitiv Workspace is the Refinitiv software used in this work to down-
load market data through the API Keys.

33. K. Li, P. Mohanram, “Fundamental Analysis: Combining the Search for Quality with the Search
for Value”, Contemporary Accounting Research, vol. 36, no. 3, pp. 1217-1927, 2018.

34. Z. Zhou, M. Gao, Q. Liu, H. Xiao, “Forecasting stock price movements with multiple data sources:
Evidence from stock market in China”, Physica A: Statistical Mechanics and its Applications, vol.
542, no. 15, 2020.

20 deep learning for asset managers

- in terms of technical analysis, we use Ferrari historical stock prices (OHLC)
plus volume and derived technical indicators such as momentum, volatili-
ty and cycle-based indicators;

- in terms of fundamental analysis, we use Ferrari balance-sheet ratios such as
profitability, liquidity, leverage and efficiency ratios and financial analysts’
estimates on target-prices and target-EPSs to incorporate some information
about the sentiment of the market.

2) Sector-specific data:

among the sectors Ferrari is involved into or may be affected by, we consider the
automotive, luxury and oil and metal sectors; for our prediction task, we want to
construct three proxies – one per sector – where the components of each proxy are
those showing major explanatory power over Ferrari returns; to do it, we proceed
as follows:
1. we download the daily closing prices of the listed companies that are glob-

al leaders for the automotive and luxury sectors and the daily closing prices
of the most traded futures on the oil and metal sectors;

2. we construct a correlation matrix between the downloaded data and Ferrari
daily closing prices, all transformed into log-returns;

3. we remove from our dataset all the time series that show a correlation co-
efficient with Ferrari lower than 0.235, as we assume they won’t add any rel-
evant information for our prediction task.

The time-series not removed from the original dataset are taken as features.

3. Global and Macroeconomic data:

assuming the significance of global and macroeconomic variables’ impact on Fer-
rari stock prices 36 37 38 39 40, we consider three different classes of global and macroe-
conomic variables: global equity indices, interest rates and exchange rates.
We download different financial instruments representing the three classes above
and we conduct a linear correlation analysis of each of them with Ferrari stock
price, as done with the sector-specific data. We keep as features only those ex-
hibiting a correlation coefficient greater than 0.2.

35. G. Chandrashekar, F. Sahin, “A survey on feature selection methods”, Computers & Electrical
Engineering, vol. 40, no. 1, pp. 16-28, 2014.

36. J. Lintner, “Inflation and Security Returns”, The Journal of Finance, vol. 30, no. 2, pp. 259-280,
1975.

37. J.F. Jaffe, G. Mandelker, “The ‘Fisher Effect’ for Risky Assets: An Empirical Investigation”, Jour-
nal of Finance, vol. 31, no. 2, pp. 447-458, 1976.

38. E.F. Fama, G.W. Schwert, “Asset returns and inflation” Journal of Financial Economics, vol. 5,
no. 2, pp. 115-146, 1977.

39. N.-F. Chen, R. Roll, S.A. Ross, “Economic Forces and the Stock Market”, The Journal of Busi-
ness, vol. 59, no. 3, pp. 383-403, 1986.

40. S.J. Grossman, R.J. Shiller, “The Determinants of the Variability of Stock Market Prices”, The
American Economic Review, vol. 71, no. 2, pp. 222-227, 1981.

21

From the features’ selection process, we obtain a total of 56 features that will con-
stitute the input vector for our forecasting models.

The selected features are listed below.

All data are transformed into log-returns to benefit from a comparable metric and
avoid biases when fed into the forecasting models.

5.2 Dataset Splitting and Labelling

To produce a labeled dataset out of the original features dataset, we need to create
the triplets of:
1. training set: used to fit the forecasting model;
2. validating set: used to tune the model’s hyper-parameters;
3. testing set: used to test the model on out-of-sample data.

Instead of using a fixed-ratio approach, we choose to employ a fixed-length sliding
window approach to construct multiple triplets of training, validating and testing sets:
keeping constant the size of the three sets to a length that is smaller than the total
length of the original dataset, we move each window across the original dataset of
M steps per time to create multiple triplets of sets (where M is the number of steps-
ahead predictions required to the forecasting model).

This approach allows to “artificially” increase the length of the original dataset
and that’s very helpful when we deal with features that don’t cover a period of dai-
ly observations long-enough to ensure good generalizing properties of the forecasting
model: in our case, few more observations than 6 years may have led to an algorithm
forced to learn from a too short training set with too many features and, consequently,
to overfitting problems.

The chosen proportions of the three sets in each triplet are the following:

deep learning for asset managers

TABLE 1: LIST OF THE 56 FEATURES OF THE INPUT DATASET

Historical Prices and
Technical Indicators

Fundamental
Indicators

Automotive
Sector

Luxury
Sector

Oil and Metal
Sectors

Global and
Macro data

Open
High
Low
Close
Volume
SMA5, SMA10, SMA20
EMA20
CCI
RSI

EPS
DY
PE ratio
PCF ratio
ROS ratio
Mkt. Cap.
Target price
Target EPS

Volkswagen
Ford
Stellantis
Renault
Daimler
Bayerishe
GM
BMV
Tesla
Continental

LVMH
Kering
Estee Lauder
C. F. R.
PVH
Swatch
Hermes
Tapestry
Burberry
Moncler
L’Oreal
Luxottica
Ralph Lauren
Capri Hold.
Tiffany

Platinum
Palladium
Copper
WTI
Brent

S&P 500
VIX
NASDAQ 100
EuroStoxx 50
FTSE MIB
EUR/USD
LIBOR

22 deep learning for asset managers

so that, each training set accounts for a little more than 1 business year (exact-
ly 315 days) and each validating and testing dataset for approximately 2 business
months (exactly 40 days).

The figure below gives an intuitive idea of the obtained training, validating and
testing triplets:

Figure 4: Sliding-window

Running the sliding window on the training set returns samples with features and
labels, which are the previous N and next M observations respectively. Validating and
test samples are also constructed in the same manner for model evaluation.

5.3 Pre-Processing

When dealing with real-world data, the chances of them being poor in quality or some-
where missing are high and can lead to misleading results. The objective of pre-pro-
cessing techniques is exactly to improve the overall quality of the data so that both
the robustness of the model and the training efficiency of the learning algorithm re-
sult increased41.

In this work, the main stages of the data preprocessing are the data standardization,
the Wavelet transform and the Stacked Autoencoder neural network.

Data Standardization: The training, validating and testing datasets are all scaled
using the Robust standardization technique which rescales all the features in the
datasets so that their distributions have mean 0 and standard deviation 1:

where μ is the mean of the feature’s distribution and σ its standard deviation.

!"#$%&'(!)*)#$+,)#*-,./+!"#$&%'-0)$)#1!+*1&1("&.+2345+
!"#$%&'&01)#)#$+("&./+!"#$&%'(!)*)#$+,)#*-,.+2675+
!"#$%&'81!)*1&)#$+("&./+!"#$&%'(!)*)#$+,)#*-,.+2975+
!"#$%&'&"(&)#$+("&./+!"#$&%'81!)*1&)#$+("&.+!

41. S. Kotsiantis, D. Kanellopoulos, P.E. Pintelas, “Data Preprocessing for Supervised Leaning”,
International Journal of Computer and Information Engineering, vol. 1, no. 12, 2007.

!!"#$%#&%'()% "#! $ #%& !

23

Differently from the classic standardization, the Robust standardization technique
also accomplishes the need to account for the presence of outliers by computing the
mean and the standard deviation of each feature on the values belonging to the in-
terquartile range of its distribution (from the 25th to the 75th quantiles), hence com-
pletely ignoring the outliers.

Since the algorithm is not allowed to look at the values of the validating and test-
ing datasets as they have to remain “unseen” for learning purposes, the mean and
standard deviation of each feature’s distribution are computed on its training set and
then used to transform not only the training dataset but also the respective validating
and testing dataset.

Wavelet Transform: Financial time series are typically noisy and nonstationary. Those
two characteristics together can make the useful signal of the time series even nois-
ier than the underlying noise and, when it happens, traditional denoising techniques
prove to be ineffective. James B. Ramsey clarified the problem and identified a pos-
sible solution in his remarkable paper “The contribution of wavelets to the analysis of
economic and financial data”, published in 199942:

“Traditionally in economic analysis the assumption has universally been made
that the signal f(t) is smooth and the innovations ε(t) are irregular. Consequently,
it’s a natural first step to consider extracting the signal f(t) from the observed
signal j(t) = f(t) + ε(t) by locally smoothing y(t).
However, when the signal is as, or even more, irregular than the noise, such a
procedure no longer provides a useful approximation to the signal. The process
of smoothing to remove the contamination of noise distorts the appearance of
the signal itself. However, when the noise is below a threshold and the signal is
well above a threshold, one can isolate the signal from the noise component by
selectively shrinking the wavelet coefficient estimates.”

Indeed, the idea behind the wavelet denoising is to look at the time series as a sig-
nal to decompose into its low frequency (approximation coefficients) and high fre-
quency (detail coefficients) components; once those components are identified, a
threshold function and a threshold value are selected and applied to the decomposed
time series: this filtering technique allows to keep the signal above the threshold,
either shrinkage or set to zero the signal below the threshold and use the resulting
signal to reconstruct the original time series as a denoised one.

This technique outperforms the well-known Fourier transform for the frequency
analysis of financial time series. Indeed, the Fourier transform identifies all frequencies
of a signal by decomposing it into a series of sines and cosines frequencies, but it does-
n’t provide any information about the time to which that frequencies correspond. Con-

deep learning for asset managers

42. J. B. Ramsey, “The Contribution of Wavelets to the Analysis of Economic and Financial Data”,
The Royal Society, vol. 357, no. 1760, pp. 2593-2606, 1999.

24 deep learning for asset managers

trarily, the Wavelet transform uses functions (wavelets) that are localized both in time
and frequency, hence it overcomes the problem of dealing with sequential series.

The 3 factors necessary to proceed with the Wavelet transform are the following:
1) selection of a wavelet basis:

the Wavelet transform represents any function as a superposition of a set of
wavelets, which are small “waves” located in different times whose specific forms
are determined by the so-called wavelet basis; those wavelets can be stretched
and shifted to capture signals that are local in time and frequencies.
More specifically, given a wavelet mother ψ, its daughter wavelets are obtained
through the scaling parameter s and the translation parameter τ as:

Choosing the most appropriate basis function for the mother wavelet – given the
characteristics of the signal under consideration – is the first step of the denoising
task.

The figure below shows the shapes of the most common wavelet basis.

Figure 5: Discrete wavelet bases

2) determination of order and level of the decomposition layers:

the next step after the wavelet basis’s selection is the multilevel decomposition
of the signal into its low frequency component and high frequency components,
which results in one approximation coefficient and j detail coefficients, with j be-
ing the chosen decomposition level.

!!"#"#$ % &
'(!!")

* + , (!
(!)$!

25

The figure below shows what happens at each level of decomposition.

Figure 6: Wavelet decomposition at level 2

3) determination of the threshold value and threshold function

the thresholding step consists of applying a threshold value to the previously ob-
tained detail coefficients with the scope of keeping only the useful signal and dis-
card the irrelevant noise. The way the irrelevant noise is discarded depends on the
selected threshold function: the hard threshold function sets to zero all the detailed
coefficients smaller than the threshold value while the soft threshold function shrinks
them towards zero. Both the functions show some problems: the hard threshold-
ing makes the reconstructed signal have no continuity while the soft threshold-
ing makes it too smooth. Hong-Ye Gao43 proposed a different method, the garrote
threshold function, which is asymptotically equivalent to the other two functions
but shows smaller MSE and less sensitivity to small perturbations in the data.

Once the threshold value and the threshold function are selected, the signal can be
reconstructed by performing the inverse of the Wavelet transform used in step 1).
For this work, we test 4 different wavelet bases to denoise each feature of the dataset:
- Haar Wavelet;
- Daubenchies wavelet of order 3;
- Symlet wavelet of order 4;
- Coiflet wavelet of orders 3 and 4.

Given a specific wavelet basis, we decompose each feature through its maximum use-
ful level of decomposition to obtain the detailed coefficients. To quantify that max-
imum level, we rely on the optimization function “max_level” of the Python built-in
library PyWavelet.

In order to calculate the approximation and detail coefficients for both the val-
idation and test sets, we want to avoid taking future information about the signal

deep learning for asset managers

43. H.-Y. Gao, “Wavelet Shrinkage Denoising Using the Non-Negative Garrote”, Journal of Com-
putational and Graphical Statistics, vol. 7, no. 4, pp. 469-488, 1998.

26 deep learning for asset managers

into account; to do it, we add one data point at a time to the training set and we cal-
culate the coefficients of the obtained signal; then, we store the coefficients corre-
sponding to the data point added. We perform this procedure until all data points
in the validation and test sets have their respective coefficients calculated.

An example of the multi-level decomposition obtained when applying the Sym5
Wavelet transform to the standardized log-returns of Ferrari close prices is given by
the following picture.

Figure 7: Sym5 6-levels wavelet decomposition

Once obtained the multi-level decomposition of each feature, we set the threshold
value to one standard deviation of the feature’s signal distribution and we select the
garrote as threshold function. We apply the thresholding to all detail coefficients at
each decomposition level and we reconstruct the signal through the inverse of the
wavelet transform used for the decomposition.

Repeating the same procedure for all wavelet bases, we obtain a reconstructed
signal for each feature’s time series and for each tested wavelet basis. The way we
select the best performing wavelet basis for our features dataset is by looking at its
associated Signal to Noise Ratio (STN), where by “associated” we mean the average
SNRs of all the features’ time series reconstructed through that wavelet basis. Indeed,
the SNR indicates how much of the useful signal is kept with respect to the removed
noise: the higher the SNR, the better the denoising effect. Its mathematical formu-
lation is the following:

!"# $ %&'()*+ , -!"#!$%, +-! . -&/ 0"'!$%
0!

27

When applied to our features dataset, it returns the following SNR values for each
tested wavelet basis:

where a SNR over 20 dB indicates that the signal has 100 times the power of the
interfering noise. Based on the results above, we select the Coif3 as wavelet basis for
out features dataset and we proceed with the denoising of the already standardized
features. The reconstructed times series constitute the dataset used by the next pre-
processing method.

Stacked Autoencoder: The process of determining the intrinsic dimensionality of
a features dataset is called Dimensionality Estimation (DE) process and it may prove
to be a fundamental step in the preprocessing phase to understand whether the dataset
fed to the forecasting model contains all and only the relevant information, leaving
out all the unnecessary data. Whenever the n-dimensional dataset turns out to have
an intrinsic dimensionality of p<n, it means that the original dataset can be reduced
in its dimensionality still preserving all the information of the higher dimensional
dataset. In that case we proceed with a Dimensionality Reduction (DR) process.

DR can be particularly important when the input dataset contains multiple fea-
tures that are highly correlated between themselves: feeding all of them to the fore-
casting model may lead to multicollinearity problems or may affect the robustness
and the generalizing properties of the machine learning algorithm.

Multiples methods have been proposed for the DR process. The Principal Com-
ponent Analysis (PCA) is among the most used linear methods: it uses the linear cor-
relations among the features to find their direction of maximum variance and pro-
ject the original dataset into a new space of fewer dimensions. However, since real
world data don’t lay on a linear manifold but rather on a non-linear one, nonlinear
models may improve the accuracy of the dimensionality reduction process. Among
the nonlinear models specifically thought for this task there’s the Autoencoder neu-
ral network.

An Auto-Encoder (AE) is a neural network that learns an approximation to the
identity function, so that the output X̂ is as close as possible to the n-dimensional in-
put X.

The AE’s approximation works through an encoder and decoder structure: the
encoder’s hidden layers add increased levels of compression to the input vector; the
inner hidden layer, when reached, returns the so-called latent representation of the
input vector and passes the information to the decoder; finally, the decoder recon-
structs the original input vector by de-compressing its latent representation through
the same hidden layers used by the encoder.

deep learning for asset managers

Not
denoised
dataset

Haar Db3 Sym5 Coif3 Coif4

0.2124 0.1994 0.2361 0.2357 0.2752 0.2538

28 deep learning for asset managers

The figure below gives a graphic representation of the structure just described.

Figure 8: Single hidden-layer autoencoder

The AE learns by minimizing the difference between the original input vector and
the reconstructed output: when that difference is minimized, the approximation of
the original input is given by its latent representation. The features encoded by the
latent representation are also called deep features.

To show how this approximation problem looks like using the parameters of the
neural network, we provide the mathematical formulation of the simplest case of a
single hidden-layer AE (like in the figure above). In that case, each input vector xi
∈ Rnx1 is transformed into a hidden vector yi ∈ Rkx1 for k<n through the mapping:

where σ is the activation function (like a sigmoid function or a ReLU), W1 is the
first hidden layer’s weight matrix and b1 is the first hidden layer’s biases vector.

The obtained hidden vector yi is further transformed to the approximated input
x ̂ i ∈ Rnx1 through another mapping:

where W2 and b1 are the second hidden layer’s weight matrix and biases vec-
tor, respectively.

Finally, the parameters {W1,b1, W2, b2} are found by minimizing a cost func-
tion C that quantifies the difference between the original input xi and the approxi-
mated x ̂ i:

!! " #$%"&! '()"*!

!"! # $%&"'! ()*"+ #)$%&"$%&#!! ()*#+ ()*"+)!

!"#!"#$%&'()* +, - $$!"#!"#$./$0+ 1 +20$!

29

where W={W1,W2} and b={b1,b2}.

The higher the number of hidden layers used, the more complex the approximation.
The need of performing a multi-layer dimensionality reduction may come from the
fact of dealing with complex non-linear relationships among the input features so that
using only one Auto-Encoder isn’t enough to find their latent representation. The mul-
ti-layers autoencoders are called Stacked Autoencoders (SA) because they’re obtained
by training single autoencoders, then keeping only their respective hidden layers and
stacking them one on top of the other to obtain the final multi-layer autoencoder.

In this work, we use a Stacked Autoencoder with 5 layers to perform the di-
mensionality reduction of our 56 features dataset, as suggested by Chen et al.44. We
run the algorithm using the following parameters:
- Batchsize: 128
- Learning rate: 0.001
- Regularization: Gradient Clipping Technique
- Optimization: Adam optimizer [27]

The search-grid technique, applied to the number of hidden nodes per hidden lay-
er, returns the best performance in terms of RMSE minimization in the following set-
up: input layer with 56 nodes by construction, first hidden layer with 25 nodes, sec-
ond hidden layer with 35 nodes, third hidden layer with 25 nodes and output lay-
er with 25 nodes. By reducing the dimensionality of the features dataset from 56 fea-
tures to 25 deep features, we obtain a RMSE = 1.569 which we consider an acceptable
loss given the required approximation.

The forecasting models used in the next section make use of the features dataset
obtained from the three steps of the preprocessing phase: the data standardization,
the data denoising through Wavelet Transform and the data dimensionality reduc-
tion through Stacked Autoencoder.

5.4 Deep Learning Framework

In this section we present the structure and the hyper-parameters of the three deep
learning models being used; they’re the result of the fine-tuning process carried out
with the validation datasets.

LSTM: Input data are reshaped in the form [Batch size, Time steps, Features di-
mension], where the batch size is set equal to 64, the time steps to 24 days backwards
for predictions of 1 to 5 daily steps ahead and the features dimensions to 25, which
is the number of deep features obtained from the stacked autoencoder’s dimensionality
reduction. The LSTM neural network is structured as 4 stacked LSTMs with 1 hid-

deep learning for asset managers

44. Y. Chen, Z. Lin; X. Zhao et al., “Deep Learning-Based Classification of Hyperspectral Data”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no.
6, pp. 2094-2107, 2014.

30 deep learning for asset managers

den layer each and 20 hidden neurons per layer. For the training process, we use the
Adam optimizer with β1=0.9, β2=0.98 and ε=10-9. The learning rate is chosen
through the search-grid method and is set equal to 0.01. With respect to regularization
techniques, we use a dropout rate of 0.2 for each sub-layer of the LSTM.

Transformer: We use the original structure of the Transformer composed of an En-
coder and a Decoder, each of them with 6 identical stacked encoder and decoder lay-
ers, respectively. Each encoder layer is composed of two sub-layers, the multi-head
attention sub-layer with a number of heads equal to h=8 and a position-wise fully
connected feed-forward sub-layer. The dimension of the model is set equal to dmod-
el=512 and all sub-layers produce outputs of dimension dmodel to facilitate the resid-
ual connections. The dimensions of each head are chosen in such a way that
dk=dv=dmodel⁄h=64. The decoder layer is composed of the same two sub-layers of
the encoder layer plus an additional sub-layer, the masked multi head attention sub-
layer, which applied subsequent masks to prevent the Transformer to look into the
future when making the prediction.

For the training of the just described Transformer architecture, we use a batch
size of 128 and the Adam optimizer with β1=0.9, β2=0.98 and ε=10-9. The learn-
ing rate is chosen through the search-grid method and is set equal to 0.01. With re-
spect to regularization techniques, we use a dropout rate of 0.2.

Temporal Fusion Transformer: Given the TFT capacity of dealing with more com-
plex models, the input data fed to the TFT aren’t reduced in their dimensionality:
the dimension of the features dataset is kept equal to 56 rather than 25 like in the
LSTM and in the original Transformer. This choice is driven by the objective of ex-
ploiting the interpretability results of the TFT, which means looking at the weights
assigned to each identifiable variable rather than at those assigned to deep features
of which we cannot understand the meaning from a posterior perspective.

Moreover, given the TFT capacity of approximating longer-term dependences
among input data, we expand the lookback period to one business year, or 252 days
of observations, and we keep the forecasting horizon of 1 to 5 daily steps ahead.

For the training of the TFT architecture, we use a batch size of 256 and the Adam
optimizer with β1=0.9, β2=0.98 and ε=10-9. The learning rate is chosen through
the search-grid method and is set equal to 0.001. With respect to regularization tech-
niques, we use a dropout rate of 0.4.

6. results

A univariate ARIMA model is used as baseline for our forecasting task, assuming that
each daily Ferrari closing price is dependent on the previous p daily closing prices
observations and q daily estimation errors. We select the order of the ARIMA mod-
el using the Akaike Information Criteria (AIC) to balance the goodness of fit with a
certain simplicity and parsimony of the model. We choose the ARIMA (0,1,1), which
is the standard Exponential Smoothing model. The model is trained with the first

31

two third of the dataset. The fitted parameters are then used on the full time series
to make 1 to 5 daily steps ahead predictions.

We compare the ARIMA’s performance with those of the LSTM, the Transformer and
the TFT. Next table summarizes the RMSEs for each method, as well as the relative per-
formance gain with respect to the one step-ahead forecast of the ARIMA model.

The comparison suggests that multivariate deep learning models overall out-
perform the univariate ARIMA model. Within the three deep learning models, the
Transformer-based models outperform the LSTM and the difference in performances
becomes more evident as we increase the time steps of prediction. This suggests that
the LSTM tends to experience overfitting problems in the shorter-term predictions
and carries on those biases in the longer-term ones, where we see a poorer perfor-
mance of the LSTM also in comparison to 5 steps-ahead predictions of the ARIMA
model. This analysis indicates that attention mechanisms of Seq2Seq models high-
ly increase the forecasting performance and guarantee generalizable properties of
the forecasting model. Proceeding with our relative evaluation of results, we can see
that the TFT shows better forecasting performance compared to the original Trans-
former, suggesting that the TFT can better capture complex dynamical patterns in
the data even when the number of features and the number of backward time steps
to look at are remarkably higher than benchmark models. The TFT is also the only
deep learning model than consistently increases its performances with increased fore-
casting horizons, registering the best result in terms of RMSE for 4 steps ahead pre-
dictions: 0.0127 RMSE of 4 steps ahead predictions versus 0.141 RMSE of 1 step ahead
predictions; moreover, the TFT’s 0.0127 RMSE is to be compared against the same
4 steps ahead predictions’ RMSEs of the Transformer (0.228), the LSTM (0.893) and
the ARIMA(0,1,1) (0.877). Overall, the TFT has outperformed all other models in
terms of RMSE of the predictions.

Finally, we focus on the best performing model, the TFT, to look at the inter-
pretability property of its results. In the first figure below, we see the average atten-
tion patterns over the lookback period of 252 days used by the neural network to make
predictions on 1 to 5 steps ahead forecasting horizons. We can see relevant spikes
on 200 backward steps’ observations and on the 150 ones. In general, we observe
that higher spikes have higher attention patterns for longer term forecasting hori-
zons rather than for the shorter ones, as if the effect of a change in underlying tem-
poral dependences would take some time to completely reflect in Ferrari closing prices.

deep learning for asset managers

TABLE 2: SUMMARY OF MODEL PERFORMANCES AND RELATIVE CHANGES W.R.T. BASELINE MODEL

Model RMSE
1 day forec.

RMSE
2 days forec.

RMSE
3 days forec.

RMSE
4 days forec.

RMSE
5 days forec.

ARIMA(0,1,1) 0.521
(-0 %)

0.672
(+28.98 %)

0.891
(+71.02 %)

0.877
(+68.83 %)

0.845
(+62.19 %)

Long Short-Term
Memory (LSTM)

0.642
(+23.22 %)

0.651
(+24.95 %)

0.767
(+47.22 %)

0.893
(+71.40 %)

0.831
(+59.50 %)

Transformer 0.213
(-59.12 %)

0.191
(-63.34 %)

0.197
(-62.19 %)

0.228
(- 56.24 %)

0.312
(-40.12 %)

Temporal Fusion
Transformer (TFT)

0.142
(-72.74 %)

0.144
(-72.36 %)

0.143
(-72.55 %)

0.127*
(-75.62 %)

0.139
(-73.32 %)

!

32 deep learning for asset managers

 F
ig

ur
e

9:
 T

FT
 A

ve
ra

ge
 A

tt
en

ti
on

 P
at

te
rn

s
at

 v
ar

io
us

 P
re

di
ct

io
n

H
or

iz
on

s

33

In the second figure below, we present the reconstructed bar plot showing the
average weights that the TFT assigns to the top three features of each input category
for 4 steps-ahead predictions. In the Appendix at the end of this work, the complete
reconstruction of the attention weights for all features of the input dataset is provided,
completed with the detailed weights for each forecasting quantile (10%, 50% and
90%) and with the average of them all. We highlight some of the main aspects that
come to notice when looking at the summary of the figure below:
- among the company-specific indicators, the technical ones show better ability

to anticipate next movements of Ferrari closing prices, at least for the forecast-
ing horizons considered in this work; we expect higher importance given to the
fundamental ones for longer term predictions;

- overall, higher attention is given to the luxury sector rather than to the automotive
one, as also confirmed by the table in Appendix. That aspect meets our expec-
tations: the business of Ferrari addresses only the luxury segment of the mar-
ket and there’s no listed company belonging to the automotive sector that shares
that same characteristic when considered a company as a whole; moreover, as
declared by the Investor Relation team, Ferrari business is increasingly moving
towards the fashion one and our analysis confirms the strategic importance of
that decision as the drivers behind the fashion market already have an impact
on Ferrari business;

- finally, the three global indices approximating the market trends show the least
contribution to Ferrari prices’ movements, when compared to all other top three
features per category; again, this is not surprisingly since the target customer for
Ferrari is presumably less affected by eventual downturn of the general market.

Figure 10: TFT Average Attention Weights at 4 steps-ahead predictions

deep learning for asset managers

34 deep learning for asset managers

7. conclusion and future work

In this work we presented three deep learning approaches to forecast financial time
series data. In particular, we predicted Ferrari closing prices for 1 to 5 daily steps ahead
horizons. We performed a univariate time series analysis through the ARIMA(0,1,1)
model and we used that as our baseline to quantify the relative improvements of the
multivariate analysis of the three deep learning models.

The core of the methodology has been the data preprocessing phase, done using
the Robust Standardization to account for outliers, the Wavelet Transform to remove
the unnecessary noise from the features’ time series and the Stacked Autoencoder
to reduce to dimensionality of the features dataset to its intrinsic dimensionality. Over-
all, it helped in creating a system that was robust enough to model the highly irregular
and noisy nature of the financial time series; moreover, it resulted in a less prone to
overfitting system with enhanced generalization capabilities.

The best performances were those of the two attention-based models, the Trans-
former and the Temporal Fusion Transformer, in comparison to the sequence-
aligned LSTM method. Moreover, the TFT showed an improvement of almost 76%
of the forecasts’ RMSE compared to the baseline, hence confirming its superiority
in learning complex dependencies of also longer-term time series.

To conclude, we hypothesize that our approach can be further extended to mod-
el the sentiment of the market to better capture the direction of stock prices with at-
tention-based deep learning models.

35

appendix

automotive sector - linear correlation coefficients

luxury sector - linear correlation coefficients

deep learning for asset managers

36 deep learning for asset managers

oil and metal sectors - linear correlation coefficients

! ! !! ! ! ! !
COMPANY-SPECIFIC ATTENTION WEIGHTS OF THE TEMPORAL FUSION TRANSFORMER

TECHNICAL 10% 50% 90% FUNDAMENTAL Mean 10% 50% 90%

Open 0,005319 0,009643 0,015057 EPS 0,015355 0,010647 0,014364 0,021624

High 0,01732 0,032128 0,042997 DY 0,013418 0,011189 0,013377 0,015877

Low 0,009699 0,012294 0,017418 PE 0,011106 0,009434 0,010925 0,012707

Close 0,008531 0,010594 0,013718 PCF 0,010761 0,006667 0,011215 0,014322

Volume 0,009005 0,015131 0,019733 ROS 0,025125 0,018417 0,025571 0,031913

SMA5 0,008496 0,009509 0,013976 MC 0,011205 0,007135 0,010929 0,015954

SMA10 0,007606 0,009361 0,014964 Target Price 0,03168 0,017216 0,035126 0,042699

SMA20 0,011809 0,015545 0,019869 Target EPS 0,017233 0,011094 0,016979 0,023627

EMA20 0,008781 0,011154 0,014964

CCI 0,022396 0,030128 0,04268

RSI 0,025332 0,039486 0,066058

!

37deep learning for asset managers

!
!

!
!

!!
!

!
!

!
SE

C
TO

R
IA

L
A

TT
EN

TI
O

N
 W

EI
G

H
TS

 O
F

TH
E

TE
M

PO
R

A
L

FU
SI

O
N

 T
R

A
N

SF
O

R
M

ER
!

A
U

TO
M

O
TI

V
E

M
ea

n
10

%
50

%

90
%

 L
U

X
U

R
Y

M

ea
n

10
%

50
%

90
%

V
ol

ks
w

ag
en

0,

01
49

89

0,
00

95
33

0,
01

45
63

0,

02
04

69
 L

M
V

H

0,
02

08
72

0,

01
67

58
0,

02
02

62
0,

02
63

52

Fo
rd

0,

01
17

16

0,
00

72
51

0,
01

19
84

0,

01
61

16
 K

er
in

g
0,

00
84

60

0,
00

69
92

0,
00

83
90

0,
01

02
31

St
el

la
nt

is

0,
01

30
97

0,

00
87

44
0,

01
32

71

0,
01

66
95

 E
st

ee
_L

au
de

r
0,

02
80

96

0,
01

68
16

0,
02

53
74

0,
04

46
05

R
en

au
lt

0,

01
49

62

0,
01

27
28

0,
01

46
59

0,

01
75

55
 C

. F
. R

ic
he

m
on

t
0,

01
81

49

0,
01

02
06

0,
01

66
40

0,
02

83
48

D
am

le
r

0,
01

67
59

0,

01
20

63
0,

01
63

32

0,
02

12
40

 P
V

H

0,
01

23
87

0,

00
85

37
0,

01
26

17
0,

01
58

67

Ba
ye

ri
sc

he

0,
02

15
64

0,

01
33

07
0,

02
14

53

0,
02

95
67

 S
w

at
ch

0,

00
99

66

0,
00

54
56

0,
00

99
17

0,
01

42
78

G
ne

ra
l M

ot
or

s
0,

02
65

70

0,
02

01
5

0,
02

58
35

0,

03
41

92
 H

er
m

es

0,
01

52
06

0,

01
27

18
0,

01
46

95
0,

01
72

68

BM
W

0,

01
18

02

0,
00

82
98

0,
01

16
51

0,

01
57

72
 T

ap
es

tr
y

0,
02

88
11

0,

01
94

75
0,

02
69

36
0,

04
04

14

Te
sl

a
0,

01
83

13

0,
01

35
64

0,
01

79
04

0,

02
37

01
 B

ur
be

rr
y

0,
04

04
64

0,

02
72

79
0,

04
03

60
0,

05
43

07

C
on

ti
ne

nt
al

0,

01
35

74

0,
01

03
74

0,
01

31
87

0,

01
73

43
 M

on
cl

er

0,
01

51
02

0,

00
92

26
0,

01
37

06
0,

02
16

72

Lo
re

al

0,
02

61
46

0,

01
65

62
0,

02
37

67
0,

03
92

72

O
IL

&
M

ET
A

L
M

ea
n

10
%

50
%

90

%
 L

ux
ot

ti
ca

0,

03
58

61

0,
01

47
67

0,
03

36
99

0,
05

95
79

Pl
at

in
um

0,

01
67

95

0,
01

20
59

0,
01

53
30

0,

02
38

48
 R

al
ph

 L
au

re
n

0,
01

32
12

0,

00
95

00
0,

01
29

81
0,

01
72

19

Pa
lla

di
um

0,

01
14

88

0,
00

65
03

0,
01

07
58

0,

01
77

00
 C

ap
ri

 H
ol

di
ng

0,

01
26

57

0,
01

01
88

0,
01

18
91

0,
01

60
43

C
op

pe
r

0,
02

69
97

0,

01
67

51
0,

02
60

86

0,
03

78
85

 T
iff

an
i

0,
01

53
24

0,

00
96

21
0,

01
48

62
0,

02
07

51

W
TI

0,

05
17

73

0,
02

54
13

0,
05

28
42

0,

07
57

68

Br
en

t
0,

03
05

36

0,
02

05
92

0,
03

06
21

0,

04
05

52

!

38 deep learning for asset managers

MACROECONOMIC ATTENTION WEIGHTS OF THE TEMPORAL FUSION TRANSFORMER

GLOBAL&MACRO DATA Mean 10% 50% 90%

S&P500 0,019563 0,010915 0,018612 0,029357

VIX 0,010892 0,009502 0,010970 0,012318

Nasdaq100 0,019519 0,012172 0,017997 0,029504

EuroStoxx50 0,01721 0,011899 0,016056 0,023659

FTSE MIB 0,016943 0,013392 0,017351 0,020250

EUR/USD 0,010796 0,007994 0,010766 0,013629

LIBOR 0,009196 0,005699 0,010236 0,011652

!

