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Routing Games, Information and Learning

By Francesco Giordano

I. INTRODUCTION AND CONTRIBUTION

In the thesis we explore various aspects of models related to Selfish Routing. These
models, known as Routing Games, provide a way to describe and simulate real-world
routing scenarios, like traffic on roads and data transmission in telecommunication
networks.

Initially, we delve into the traditional setup, which involves a static game with-
out uncertainty. In this scenario, traffic flows from a group of starting points to a set
of destinations. We discuss key findings related to equilibria, optimality, and efficiency
in this context.

Subsequently, we investigate recent contributions that introduce elements of un-
certainty. This uncertainty can manifest in different ways, such as variations in traffic
demands or changes in the costs experienced by the participants. Real-life traffic sit-
uations often involve various sources of randomness, which have been the subject
of prior theoretical studies. When analyzing how uncertainty influences routing be-
havior, we pay particular attention to incomplete information that can be revealed
through the concept of Bayesian rationality.

We examine routing instances where an unknown factor affects the costs asso-
ciated with edges, and the objective is to minimize the expected cost for each route.
It becomes possible to learn the true underlying factor when these incomplete in-
formation games are repeatedly played, each time with a random level of demand.
Notably, two types of social learning emerge in non-atomic routing games: strong
learning, where the true network state is identified, and weak learning, where play-
ers learn how to make decisions as if they knew the true state.

The original theoretical contribution of this thesis is presented in the second part.
A recent study by Macault et al. (2022) clarified the conditions under which social
learning occurs in single-commodity non-atomic routing games with unlimited edge
capacities. The authors demonstrated that strong learning is almost surely guaran-
teed if the network follows a specific topological condition called series-parallel. Build-
ing on this foundation, we precisely define when a network state is identifiable and
expand the network conditions necessary to achieve almost certain learning, including
in scenarios with multiple commodities and capacity limitations. This thesis extends
the existing results in two distinct directions: (i) it considers models with multiple
commodities, (ii) it accommodates edges with traffic capacity limits.
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With strictly increasing, continuous, and unbounded costs, we find that the learn-
ing conditions differ between instances with capacity limitations and those with un-
limited edge capacities. Specifically, in instances with capacity limitations, a suffi-
cient condition for achieving learning is that the network satisfies a condition where,
at full congestion, the load on each edge reaches an upper bound. This condition is
considered a milder form of capacity conservation, and it doesn’t impose any restrictions
on the network’s topology. In contrast, in instances with unlimited edge capacities,
a sufficient condition for achieving learning is that the sub-network available to each
commodity follows a series-parallel structure.

2. DETERMINISTIC ROUTING GAMES

A traffic scenario can be represented as a non-cooperative game played on a network.
In a selfish routing game, various traffic flows, each referred to as a commodity, need
to be directed from their sources to their respective destinations within a directed
graph. The assignment of traffic to specific paths within the network is known as flow.

In the context of non-atomic games, the set of players is defined based on infinitely
divisible traffic masses, with each player having a negligible impact on the costs as-
sociated with network edges.

A non-atomic instance is defined as G=(N,d,y,c), that is, by a network, a vector
of traffic demands, a vector of edge capacities, and a vector edge cost functions. When
edge capacities are unlimited, an instance is described only by the network, costs,
and demands.

The game is endowed with set of available paths for the players. The amount of
traffic assigned to each path defines a flow. Specifically, a flow is a vector that spec-
ifies, for each path, a non-negative quantity representing the traffic routed through
that path. A flow vector is considered feasible when it successfully routes all traffic
demand through the network while adhering to edge capacity limits.

The load on an edge is defined as the amount of traffic that passes through that
edge. A flow is in equilibrium when it exclusively employs paths with the minimum
costs, preventing any advantageous redistribution of traffic. In non-atomic games,
an equilibrium flow is also referred to as a Nash Flow or a Wardrop Equilibrium. In
cases with unlimited edge capacity, the costs of all utilized paths are equal, and they
are lower than the costs incurred by any potential traffic distribution on unused paths.

A Wardrop equilibrium in a non-atomic routing game always exists. This is due
to the fact that routing games are potential games with continuous sets of players.
This can be demonstrated through the equivalence of Nash flows and local minima
of a potential function that entirely characterizes the game’s costs. Furthermore, in
non-atomic scenarios, equilibrium costs are essentially unique, meaning that mul-
tiple equilibrium flows may exist, but all equilibrium flows lead to the same costs.

In contrast, an optimal flow is a flow that minimizes the total cost experienced
by the players. Optimal flows also always exist, as they are solutions to a convex op-
timization problem within a closed and bounded set.
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In instances with capacity limits, the Wardrop principle of equilibrium no longer
holds true. In other words, equilibrium costs of paths are not guaranteed to be equal,
and equilibrium loads are not always unique. The equilibrium concept for instances
with capacity constraints analogous to the Wardrop Equilibrium is known as capacitated
user equilibrium.

3. ROUTING GAMES UNDER UNCERTAINTY

This section delves into the complexities of Social Learning in a Dynamic Non-atom-
ic Routing Game where the network setup can have either infinite or finite edge ca-
pacities. We explore the main ideas and results in a less technical manner.

To begin, we consider the presence of various sources of uncertainty that can in-
fluence routing decisions. This leads us to explore ways to model this uncertainty
within deterministic routing games. In our work, we particularly focus on a model
involving incomplete information, where traffic demands and costs are subject to ran-
domness. Importantly, this randomness in costs depends solely on the underlying net-
work state, which is initially unknown to the players. In this context, we examine rout-
ing instances where the true network conditions are represented through an unknown
network state. Players hold a common belief about this unknown state and make rout-
ing decisions based on their beliefs.

We consider a finite set of possible network states, with an unknown random state
that is realized before the game is played. Players share a common belief about the
unknown state.

In the case of an instance with an unknown state, a flow vector is considered to
be in equilibrium if it minimizes the expected costs of paths, given the public belief.
This means that in an instance with an unknown state, a flow is at equilibrium when
no commodity has a path with a strictly smaller expected cost than any other path
being used.

We define a Dynamic Non-atomic Routing Game as a routing scenario repeated
over time, where each stage game features random traffic inflow. Time is discrete,
and networks are characterized by a total capacity, that can be infinite.

Traffic demands are modeled as a sequence of independent identically distributed
non-negative random vectors, with each having common marginal distributions
bounded by network capacities. In each period, a traffic demand is realized and pub-
licly observed. Players choose an equilibrium flow, and information about equilib-
rium load and costs is shared with all players.

Through repeated play of the game, players collectively leverage the random-
ness in traffic demands to uncover the randomness in the network state. The pub-
lic belief is updated in each stage game according to Bayes’ rule, and when a state
is identified through equilibrium costs, the public belief changes.

We introduce the concept of the posterior public belief, which depends on the
random demands up to a generic period t. As a probability distribution, it is always
bounded, making the sequence of posterior beliefs a bounded martingale. By the mar-
tingale convergence theorem, this sequence converges.
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In this context, we consider two ideas of social learning: Strong Learning and Weak
Learning. Strong Learning implies that the sequence of posteriors converges almost
surely to a distribution assigning positive probability solely to the true state. On the
other hand, Weak Learning suggests that the true state may not necessarily be dis-
covered, but in equilibrium and asymptotically, the total traffic is routed as if the true
state were known.

In the section on Social Learning in non-atomic routing games, we further explore
the problem of social learning within a Dynamic Non-atomic Routing Game. We in-
vestigate this problem in scenarios with both infinite and finite edge capacities.

Before presenting our key results, we delve into the structural properties of ca-
pacity-constrained networks. We note that in capacitated networks, edge loads are
upper-bounded, and we characterize this bound, which may not always match the
edge’s capacity. We redefine feasible loads in terms of these upper bounds and use
this foundation to determine when an unknown network state is identifiable. This
preliminary analysis is crucial for understanding when social learning is possible in
networks with capacity constraints.

Ultimately, we demonstrate that social learning occurs in instances with finite
capacities when the underlying network adheres to a condition on its edge capaci-
ties known as weak capacity conservation. Additionally, we show that social learn-
ing occurs in instances with infinite capacities if the underlying network exhibits a
series-parallel structure in each sub-network available to its source-destination pairs.

In scenarios with finite capacities, the maximum load achievable on an edge may
be less than the edge’s capacity. However, this maximum load is determined by the
set of edge capacities, and we characterize this load upper bound. This upper bound
is significant in defining when an unknown network state is identifiable and can be
learned. We establish that a load is feasible if and only if it simultaneously adheres
to the upper bound for all its edges.

We then determine the feasibility of a flow by considering two conditions: one
ensuring that edge capacities are respected, and the other ensuring that all traffic
is successfully routed. We define the set of feasible flows as the set in which both con-
ditions are met.

With a clear understanding of when a flow vector is feasible, we characterize the
conditions for identifying an unknown network state. An unknown state is identifi-
able if, for all pairs of possible state realizations, there exists an edge such that, for
at least one load value, there are two costs with different values in different states.

In networks with capacity constraints, equilibrium loads may not necessarily reach
the edge capacity for all edges. This can hinder strong learning. Specifically, if the
load value required to identify states cannot be achieved, strong learning is not pos-
sible. Our thesis provides examples where learning does not occur in this context.

4. CAPACITY CONSERVATION

In the following discussion, we introduce the concept of Capacity Conservation, fo-
cusing on the total capacity of a network. This total capacity represents the sum of
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the capacities of the edges in the smallest cut of the network. Specifically, a cut in
a directed multigraph with a single source and destination is a set of edges that makes
it impossible to route from the source to the destination without crossing this set of
edges. The capacity of a cut is determined by adding up the capacities of the indi-
vidual edges within it. The smallest cut refers to the cut with the smallest capacity,
and the capacity of this smallest cut represents the network’s overall capacity. It in-
dicates the maximum amount of traffic that can be routed through the network.

In the context of a multi-commodity network, which is the combination of sub-
networks available to each commodity, we can still refer to a cut as a set of edges that
makes it impossible to go from any source to any destination without crossing this
set. In this case as well, the capacity of the network corresponds to the capacity of
the smallest cut.

To proceed, we introduce a network condition, known as capacity conservation,
that enables social learning in a Dynamic Non-atomic Routing Game (DNRG) played
on a capacitated network. Moving forward, for each internal node, we define the sets
of entering edges into the node and exiting edges from the node itself. The capaci-
ty conservation property is satisfied if, for all internal nodes that are neither the source
nor the destination, the sum of the capacities of the edges entering that node equals
the sum of the capacities of the edges exiting from that node. In simpler terms, for
any internal node that is not the source or destination, the sum of capacities of the
edges entering that node is equal to the sum of capacities of the edges exiting from
that node.

A network that fully respects capacity conservation ensures that when the traffic
demand matches the network capacity, all edge loads reach their load upper
bound. In other words, if the traffic demand equals the network capacity, all edge
loads reach their maximum capacity. This capacity conservation property is highly
desirable. Consequently, we introduce a less strict form of it, known as weak capacity
conservation. In our definition of weak capacity conservation, for a given routing in-
stance and for each edge, the network is said to respect weak capacity conservation
if, when the traffic demand matches the network capacity, all edge loads reach their
load upper bound.

In our dynamic model with random traffic demand, an exact match between the
realization and the network capacity occurs with probability zero. However, due to
the strictly increasing nature of edge costs, equilibrium loads are continuous with
respect to the demand. Therefore, we can deduce that when the support of traffic
demand is from zero to the network capacity, the support of equilibrium loads lies
in a interval between zero and the (equilibrium) load upper bound, that is a deter-
ministic non-negative function of the demand realization.

This argument is similarly applicable to multi-commodity instances. However,
when different commodities share common edges, we must carefully consider the
allocation of capacity on these shared edges. This predetermined allocation on com-
mon edges allows us to determine the capacity of the sub-network available to each
commodity.
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Under this construction, capacity conservation implies that the total network ca-
pacity equals the sum of the capacities of the sub-networks available to each com-
modity. In a multi-commodity network, we can extend the concept of weak capac-
ity conservation to assert that when the traffic demand for each commodity match-
es the capacity of the sub-network available to that commodity, all edge loads reach
their load upper bound. In summary, when the support of the multi-commodity traffic
demand falls within the range from zero to the capacity of that subnetwork, for each
commodity the support of equilibrium loads lies in an interval within zero and the
equilibrium load upper bound for each edge.

5. SP NETWORKS

Next, we turn our attention to networks with potentially infinite edge capacities. We
begin by introducing the concept of single-commodity series-parallel networks. These
networks possess a specific topology that aligns with favorable properties, reducing
the likelihood of learning failure.

The critical point to consider is that if a network isn’t series-parallel, it contains
sub-networks in which some edges remain unused in equilibrium, even when the de-
mand is high.

To capture similar favorable properties in a multi-commodity setting, we examine
scenarios where each set of paths available to any given commodity forms itself a
series-parallel network. We refer to the resulting network as U-SP, signifying that each
commodity routes its traffic on a series-parallel network.

6. LEARNING IN CAPACITY CONSTRAINED NETWORKS

To briefly recap, players initially start with a prior distribution on the network state,
which is common knowledge. In each stage, a random demand is realized, and the
equilibrium flow is played. All newly acquired information about the experienced
costs is immediately shared with all players, who update their collective belief fol-
lowing Bayes’ rule. Strong learning takes place when the posterior public belief al-
most surely converges to a degenerate distribution that assigns positive probabili-
ty solely to the true state.

Now, let’s outline the main results of social learning in capacity-constrained net-
works. Certain fundamental cost assumptions are as follows. First, two assumptions
on costs: (i) edge costs strictly increase with load for all possible states, (ii) edge costs
are continuous with load for all possible states. Also, the following limit condition
holds: as the load on an edge approaches its capacity, the cost becomes infinitely large
for all network states.

Here are the theorems that describe learning in capacity-constrained networks:

Theorem 1: Learning in Single-Commodity Capacitated Networks
In a single-commodity Dynamic Non-atomic Routing Game (DNRG) with an iden-
tifiable unknown network state, and where the network respects weak capacity con-
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servation and satisfies the assumptions of above, strong learning occurs if the sup-
port of the random demand falls within the range between zero and the network
capacity.

Proof Idea for Theorem 1

Under these conditions, for any potential edge load between zero and the load up-
per bound, there exists a demand realization that generates it. Due to the continu-
ity of costs with respect to loads and loads with respect to demands, it’s enough to
reach a value within a small neighborhood of the required demand that ensures a
change in belief. Because of the support condition on the demand, each of these neigh-
borhoods has a positive probability.

Theorem 2: Learning in Multi-Commodity Capacitated Networks

In a multi-commodity DNRG with an identifiable unknown network state, where
the network respects weak capacity conservation and satisfies the above assump-
tions, strong learning occurs if the joint distribution of the demand vector has a sup-
port such that for each commodity the support of demand of the given commodi-
ty falls within the range from zero to the capacity of the subnetwork available to
that commodity.

In summary, strong learning is achieved in both single-commodity and multi-
commodity networks with identifiable unknown network states that respect weak
capacity conservation and satisfy the stated cost assumptions, provided that the de-
mand falls within specific support ranges.

7. LEARNING IN NETWORKS WITH INFINITE CAPACITIES

The preliminary investigation carried out by Macault et al. (2022) concentrated on
scenarios where networks have unlimited capacities, specifically in the single ori-
gin-destination case. The authors derived the following conclusions:

In a single-commodity Dynamic Non-atomic Routing Game (DNRG) with an iden-
tifiable unknown network state, assuming the network has a series-parallel (SP) topol-
ogy, edges possess infinite capacities, and the above assumptions are met, the oc-
currence of strong learning is established when the random demand’s support ex-
tends to zero to infinity.

A similar outcome is observed in instances with multiple commodities.

Theorem 1: Learning in Multi-Commodity Infinite Capacity Networks
In a multi-commodity DNRG with an identifiable unknown network state, assum-
ing the network has a U-SP topology, edges have infinite capacities, and the as-
sumptions of above are satisfied, strong learning is achieved when the support of the
demand vector covers the entire positive real space.

The learning process remains consistent with the single origin case, where equi-
librium edge loads exhibit continuity concerning demands and remain unbounded.
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8. CONCLUSION

In this thesis, we delve into recent developments in the traffic assignment problem.
In a selfish routing game, traffic must be directed from various sources to specific
destinations within a directed graph. The distribution of traffic on the network’s paths
is referred to as flow.

The first part of the thesis studies routing games under complete information
and introduces concepts like equilibrium flows, optimal flows, and routing efficiency.
Subsequently, we explore models that come into play when dealing with uncertainty.
These models involve routing instances in which the network’s state, which affects
edge costs, is unknown. In these situations, traffic is routed to minimize the expected
cost on each path. Learning the true underlying state becomes feasible when these
games involving incomplete information are repeatedly played, with a random lev-
el of demand in each stage. In the realm of non-atomic routing games, two types
of social learning emerge: strong learning, where the true network state is identi-
fied, and weak learning, where players adapt their strategies as if they knew the true
state.

The second part of the thesis is dedicated to exploring the conditions under which
social learning can be achieved. We define when a network state is identifiable and
outline the network conditions necessary for almost certain learning. With a focus
on strictly increasing, continuous, and unbounded costs, we discover that the learn-
ing conditions differ between instances with capacity constraints and those with un-
limited edge capacities. In capacitated instances, a sufficient condition for achiev-
ing learning is ensuring that, under full congestion, the load on each edge reaches
its upper bound. This condition is a milder form of capacity conservation, where the
total capacity entering and exiting each node remains equal. On the other hand, in
instances with infinite edge capacities, learning can be achieved if the sub-network
available to each commodity adheres to a series-parallel structure.
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